The Spherical Kapitza – Whitney Pendulum

In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the ve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regular & chaotic dynamics 2022, Vol.27 (1), p.65-76
1. Verfasser: Polekhin, Ivan Yu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the global dynamics of the inverted spherical pendulum with a vertically rapidly vibrating suspension point in the presence of an external horizontal periodic force field. We do not assume that this force field is weak or rapidly oscillating. Provided that the period of the vertical motion and the period of the horizontal force are commensurate, we prove that there always exists a nonfalling periodic solution, i. e., there exists an initial condition such that, along the corresponding solution, the rod of the pendulum always remains above the horizontal plane passing through the pivot point. We also show numerically that there exists an asymptotically stable nonfalling solution for a wide range of parameters of the system.
ISSN:1560-3547
1560-3547
1468-4845
DOI:10.1134/S1560354722010075