Liouville theorems of subelliptic harmonic maps
In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their...
Gespeichert in:
Veröffentlicht in: | Annals of global analysis and geometry 2022-03, Vol.61 (2), p.293-307 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we discuss two Liouville-type theorems for subelliptic harmonic maps from sub-Riemannian manifolds to Riemannian manifolds. One is the Dirichlet version which states that two subelliptic harmonic maps from a sub-Riemannian manifold with boundary to a regular ball must be same if their restrictions on boundary are same; it is generalized to complete noncompact domains as well. The other is the vanishing-type theorem for finite
L
p
-energy subelliptic harmonic maps on complete noncompact totally geodesic Riemannian foliations which are special sub-Riemannian manifolds. |
---|---|
ISSN: | 0232-704X 1572-9060 |
DOI: | 10.1007/s10455-021-09811-3 |