Yb-doped Y–Al–O thin films with a self-organized columnar structure and their anti-Stokes photoluminescence properties

We fabricated ytterbium-doped yttrium aluminum oxide (Yb:Y–Al–O) thin films by radio-frequency magnetron sputtering and evaluated their crystallinity and anti-Stokes photoluminescence (PL) properties for optical refrigeration. The Yb:Y–Al–O films that were grown on c-sapphire substrates had better t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2022-02, Vol.12 (2), p.025110-025110-8
Hauptverfasser: Nakayama, Y., Nakagawa, N., Matsuo, Y., Kaizu, T., Harada, Y., Ishihara, T., Kita, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We fabricated ytterbium-doped yttrium aluminum oxide (Yb:Y–Al–O) thin films by radio-frequency magnetron sputtering and evaluated their crystallinity and anti-Stokes photoluminescence (PL) properties for optical refrigeration. The Yb:Y–Al–O films that were grown on c-sapphire substrates had better transparency than the films deposited on fused-quartz substrates. The better transparency is considered to be a result of the smaller mismatch between the thermal expansion coefficients of Yb:Y–Al–O and c-sapphire. We found that the thin films on the c-sapphire substrates consist of densely packed sub-micron columnar crystals that are aligned perpendicular to the substrate. In these films, we confirmed the existence of perovskite, garnet, and monoclinic phases despite using a single-phase sputtering target. The excitation wavelength dependence of anti-Stokes PL is used to investigate the energy transfer process between trivalent Yb ions in neighboring columnar crystals. The data indicate that the resonant energy transfer from Yb3+ ions at a specific seven-coordinated site of the monoclinic phase to Yb3+ ions in neighboring columnar crystals is faster than the radiative relaxation at the energy-donor site.
ISSN:2158-3226
2158-3226
DOI:10.1063/5.0079632