System cost minimisation in hybrid energy storage systems connected to microgrids: A comparative approach
Electricity is the most critical facility for humans. All traditional energy supplies are rapidly depleting. As a result, the energy resources are moved from traditional to non-conventional. In this research, mixture of two energy tools, namely wind and solar energy are used. Using a Hybrid Energy S...
Gespeichert in:
Veröffentlicht in: | Journal of intelligent & fuzzy systems 2022-01, Vol.42 (3), p.2793-2808 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Electricity is the most critical facility for humans. All traditional energy supplies are rapidly depleting. As a result, the energy resources are moved from traditional to non-conventional. In this research, mixture of two energy tools, namely wind and solar energy are used. Using a Hybrid Energy Storage System (HESS), continuous power can be provided. Electricity can be produced at a cost that is affordable. The integration of solar and wind in a hybrid system cause an increase in the system’s stability, which is the key benefit of this research. The system’s power transmission efficiency and reliability can be greatly enhanced by integrating these two intermittent sources. When one of the energy source is unavailable or inadequate to meet load demands, the other energy source will supply the power. The major contribution in this research is that, the proposed bidirectional single-inductor multiple-port (BSIMP) converter significantly lowers the component count, smaller circuit size and lower cost, allowing HESS to be integrated into DC microgrid. Minimum number of components are used for the same number of ESs in HESS in the proposed BSIMP converter. The hybridization of battery and supercapacitor (SC) for storage purpose is more cost effective, as compared to the battery energy storage system, thus improving the battery stress and hence used for large scale grid energy storage. SC’s are accepted as backup and found very useful in delivering high power, not possible with batteries. The use of SC in addition to batteries can be one solution for achieving the low life cycle economy. The Single Objective Adaptive Firefly Algorithm (SOAFA) is introduced for optimising the Proportional-Integral (PI) controller parameters. The system cost is reduced by about 32%, with the constraints on wind turbine swept area, PV area, total battery and SC capacity with the proposed optimisation algorithm. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-212262 |