Integrated optimization of production planning and scheduling in uncertain re-entrance environment for fixed-position assembly workshops

For the fixed-position assembly workshop, the integrated optimization problem of production planning and scheduling in the uncertain re-entrance environment is studied. Based on the situation of aircraft assembly workshops, the characteristics of fixed-position assembly workshop with uncertain re-en...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of intelligent & fuzzy systems 2022-01, Vol.42 (3), p.1705-1722
Hauptverfasser: Jiang, Nan-Yun, Yan, Hong-Sen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For the fixed-position assembly workshop, the integrated optimization problem of production planning and scheduling in the uncertain re-entrance environment is studied. Based on the situation of aircraft assembly workshops, the characteristics of fixed-position assembly workshop with uncertain re-entrance are abstracted. As the re-entrance repetition obeys some type of probability distribution, the expected value is used to describe the repetition, and a bi-level stochastic expected value programming model of integrated production planning and scheduling is constructed. Recursive expressions for start time and completion time of assembly classes and teams are confirmed. And the relation between the decision variable in the lower-level model of scheduling and the overtime and earliness of assembly classes and teams in the upper-level model of production planning is identified. Addressing the characteristics of bi-level programming model, an alternate iteration method based on Improved Genetic Algorithm (AI-IGA) is proposed to solve the models. Elite Genetic Algorithm (EGA) is introduced for the upper-level model of production planning, and Genetic Simulated Annealing Algorithm based on Stochastic Simulation Technique (SS-GSAA) is developed for the lower-level model of scheduling. Results from our experiments demonstrate that the proposed method is feasible for production planning and optimization of the fixed-position assembly workshop with uncertain re-entrance. And algorithm comparison verifies the effectiveness of the proposed algorithm.
ISSN:1064-1246
1875-8967
DOI:10.3233/JIFS-211159