Inductive logic programming at 30

Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2022-01, Vol.111 (1), p.147-172
Hauptverfasser: Cropper, Andrew, Dumančić, Sebastijan, Evans, Richard, Muggleton, Stephen H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Inductive logic programming (ILP) is a form of logic-based machine learning. The goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. As ILP turns 30, we review the last decade of research. We focus on (i) new meta-level search methods, (ii) techniques for learning recursive programs, (iii) new approaches for predicate invention, and (iv) the use of different technologies. We conclude by discussing current limitations of ILP and directions for future research.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-021-06089-1