Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method

•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of heat and mass transfer 2022-02, Vol.183, p.122095, Article 122095
Hauptverfasser: Wang, R., Liang, Z., Souri, M., Esfahani, M.N., Jabbari, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 122095
container_title International journal of heat and mass transfer
container_volume 183
creator Wang, R.
Liang, Z.
Souri, M.
Esfahani, M.N.
Jabbari, M.
description •Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.
doi_str_mv 10.1016/j.ijheatmasstransfer.2021.122095
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624987307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021012011</els_id><sourcerecordid>2624987307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</originalsourceid><addsrcrecordid>eNqNkM2u1DAMRiMEEsOFd4jEhk0HJ52ZtDvQFb-6gg2so0ziTFM1zdw4ReqSNyfVsGPDyrJ9fCR_jL0RsBcgTm_HfRgHNCUaopLNTB7zXoIUeyEl9McnbCc61TdSdP1TtgMQqulbAc_ZC6Jxa-Fw2rHf35aIOVgzcTObaaVAPHk-hTKEJTYhzfxsSsG88jJgjpWLFbxgxLlwWqlg5AuF-cKvgyHkdjDzBStUb8Jmpaos6Ph5rdbHJThuU5q2g4hlSO4le-bNRPjqb71jPz9--HH_uXn4_unL_fuHxrYKSnMS3dH0Zw8SxNla7_s6NtKDM22HRyltiwqsAocWoD04L3oEJTupOtceu_aOvb55rzk9LkhFj2nJ9WfS8iQPfadaUJV6d6NsTkQZvb7mEE1etQC9Ba9H_W_wegte34Kviq83BdZvfoW6JRtwtuhCRlu0S-H_ZX8AEHubrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624987307</pqid></control><display><type>article</type><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><source>Access via ScienceDirect (Elsevier)</source><creator>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</creator><creatorcontrib>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</creatorcontrib><description>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122095</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cold plate ; Cooling ; Cooling rate ; Cooling systems ; Economic models ; Hybrid cooling ; Hybrid systems ; Liquid cooling ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Management systems ; Mathematical models ; Numerical analysis ; Numerical models ; Phase change material ; Phase change materials ; Power consumption ; Rechargeable batteries ; Temperature gradients ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>International journal of heat and mass transfer, 2022-02, Vol.183, p.122095, Article 122095</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</citedby><cites>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Liang, Z.</creatorcontrib><creatorcontrib>Souri, M.</creatorcontrib><creatorcontrib>Esfahani, M.N.</creatorcontrib><creatorcontrib>Jabbari, M.</creatorcontrib><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><title>International journal of heat and mass transfer</title><description>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</description><subject>Cold plate</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cooling systems</subject><subject>Economic models</subject><subject>Hybrid cooling</subject><subject>Hybrid systems</subject><subject>Liquid cooling</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Power consumption</subject><subject>Rechargeable batteries</subject><subject>Temperature gradients</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkM2u1DAMRiMEEsOFd4jEhk0HJ52ZtDvQFb-6gg2so0ziTFM1zdw4ReqSNyfVsGPDyrJ9fCR_jL0RsBcgTm_HfRgHNCUaopLNTB7zXoIUeyEl9McnbCc61TdSdP1TtgMQqulbAc_ZC6Jxa-Fw2rHf35aIOVgzcTObaaVAPHk-hTKEJTYhzfxsSsG88jJgjpWLFbxgxLlwWqlg5AuF-cKvgyHkdjDzBStUb8Jmpaos6Ph5rdbHJThuU5q2g4hlSO4le-bNRPjqb71jPz9--HH_uXn4_unL_fuHxrYKSnMS3dH0Zw8SxNla7_s6NtKDM22HRyltiwqsAocWoD04L3oEJTupOtceu_aOvb55rzk9LkhFj2nJ9WfS8iQPfadaUJV6d6NsTkQZvb7mEE1etQC9Ba9H_W_wegte34Kviq83BdZvfoW6JRtwtuhCRlu0S-H_ZX8AEHubrw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wang, R.</creator><creator>Liang, Z.</creator><creator>Souri, M.</creator><creator>Esfahani, M.N.</creator><creator>Jabbari, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202202</creationdate><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><author>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cold plate</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cooling systems</topic><topic>Economic models</topic><topic>Hybrid cooling</topic><topic>Hybrid systems</topic><topic>Liquid cooling</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Power consumption</topic><topic>Rechargeable batteries</topic><topic>Temperature gradients</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Liang, Z.</creatorcontrib><creatorcontrib>Souri, M.</creatorcontrib><creatorcontrib>Esfahani, M.N.</creatorcontrib><creatorcontrib>Jabbari, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, R.</au><au>Liang, Z.</au><au>Souri, M.</au><au>Esfahani, M.N.</au><au>Jabbari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-02</date><risdate>2022</risdate><volume>183</volume><spage>122095</spage><pages>122095-</pages><artnum>122095</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122095</doi></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2022-02, Vol.183, p.122095, Article 122095
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_journals_2624987307
source Access via ScienceDirect (Elsevier)
subjects Cold plate
Cooling
Cooling rate
Cooling systems
Economic models
Hybrid cooling
Hybrid systems
Liquid cooling
Lithium
Lithium-ion batteries
Lithium-ion battery
Management systems
Mathematical models
Numerical analysis
Numerical models
Phase change material
Phase change materials
Power consumption
Rechargeable batteries
Temperature gradients
Thermal analysis
Thermal management
Three dimensional models
title Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-08T00%3A53%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20lithium-ion%20battery%20thermal%20management%20system%20using%20phase%20change%20material%20assisted%20by%20liquid%20cooling%20method&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wang,%20R.&rft.date=2022-02&rft.volume=183&rft.spage=122095&rft.pages=122095-&rft.artnum=122095&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122095&rft_dat=%3Cproquest_cross%3E2624987307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624987307&rft_id=info:pmid/&rft_els_id=S0017931021012011&rfr_iscdi=true