Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method
•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells. In this...
Gespeichert in:
Veröffentlicht in: | International journal of heat and mass transfer 2022-02, Vol.183, p.122095, Article 122095 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 122095 |
container_title | International journal of heat and mass transfer |
container_volume | 183 |
creator | Wang, R. Liang, Z. Souri, M. Esfahani, M.N. Jabbari, M. |
description | •Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells.
In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2021.122095 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2624987307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931021012011</els_id><sourcerecordid>2624987307</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</originalsourceid><addsrcrecordid>eNqNkM2u1DAMRiMEEsOFd4jEhk0HJ52ZtDvQFb-6gg2so0ziTFM1zdw4ReqSNyfVsGPDyrJ9fCR_jL0RsBcgTm_HfRgHNCUaopLNTB7zXoIUeyEl9McnbCc61TdSdP1TtgMQqulbAc_ZC6Jxa-Fw2rHf35aIOVgzcTObaaVAPHk-hTKEJTYhzfxsSsG88jJgjpWLFbxgxLlwWqlg5AuF-cKvgyHkdjDzBStUb8Jmpaos6Ph5rdbHJThuU5q2g4hlSO4le-bNRPjqb71jPz9--HH_uXn4_unL_fuHxrYKSnMS3dH0Zw8SxNla7_s6NtKDM22HRyltiwqsAocWoD04L3oEJTupOtceu_aOvb55rzk9LkhFj2nJ9WfS8iQPfadaUJV6d6NsTkQZvb7mEE1etQC9Ba9H_W_wegte34Kviq83BdZvfoW6JRtwtuhCRlu0S-H_ZX8AEHubrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2624987307</pqid></control><display><type>article</type><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</creator><creatorcontrib>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</creatorcontrib><description>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells.
In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2021.122095</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Cold plate ; Cooling ; Cooling rate ; Cooling systems ; Economic models ; Hybrid cooling ; Hybrid systems ; Liquid cooling ; Lithium ; Lithium-ion batteries ; Lithium-ion battery ; Management systems ; Mathematical models ; Numerical analysis ; Numerical models ; Phase change material ; Phase change materials ; Power consumption ; Rechargeable batteries ; Temperature gradients ; Thermal analysis ; Thermal management ; Three dimensional models</subject><ispartof>International journal of heat and mass transfer, 2022-02, Vol.183, p.122095, Article 122095</ispartof><rights>2021</rights><rights>Copyright Elsevier BV Feb 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</citedby><cites>FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122095$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>315,782,786,3552,27931,27932,46002</link.rule.ids></links><search><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Liang, Z.</creatorcontrib><creatorcontrib>Souri, M.</creatorcontrib><creatorcontrib>Esfahani, M.N.</creatorcontrib><creatorcontrib>Jabbari, M.</creatorcontrib><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><title>International journal of heat and mass transfer</title><description>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells.
In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</description><subject>Cold plate</subject><subject>Cooling</subject><subject>Cooling rate</subject><subject>Cooling systems</subject><subject>Economic models</subject><subject>Hybrid cooling</subject><subject>Hybrid systems</subject><subject>Liquid cooling</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Lithium-ion battery</subject><subject>Management systems</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical models</subject><subject>Phase change material</subject><subject>Phase change materials</subject><subject>Power consumption</subject><subject>Rechargeable batteries</subject><subject>Temperature gradients</subject><subject>Thermal analysis</subject><subject>Thermal management</subject><subject>Three dimensional models</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkM2u1DAMRiMEEsOFd4jEhk0HJ52ZtDvQFb-6gg2so0ziTFM1zdw4ReqSNyfVsGPDyrJ9fCR_jL0RsBcgTm_HfRgHNCUaopLNTB7zXoIUeyEl9McnbCc61TdSdP1TtgMQqulbAc_ZC6Jxa-Fw2rHf35aIOVgzcTObaaVAPHk-hTKEJTYhzfxsSsG88jJgjpWLFbxgxLlwWqlg5AuF-cKvgyHkdjDzBStUb8Jmpaos6Ph5rdbHJThuU5q2g4hlSO4le-bNRPjqb71jPz9--HH_uXn4_unL_fuHxrYKSnMS3dH0Zw8SxNla7_s6NtKDM22HRyltiwqsAocWoD04L3oEJTupOtceu_aOvb55rzk9LkhFj2nJ9WfS8iQPfadaUJV6d6NsTkQZvb7mEE1etQC9Ba9H_W_wegte34Kviq83BdZvfoW6JRtwtuhCRlu0S-H_ZX8AEHubrw</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Wang, R.</creator><creator>Liang, Z.</creator><creator>Souri, M.</creator><creator>Esfahani, M.N.</creator><creator>Jabbari, M.</creator><general>Elsevier Ltd</general><general>Elsevier BV</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>202202</creationdate><title>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</title><author>Wang, R. ; Liang, Z. ; Souri, M. ; Esfahani, M.N. ; Jabbari, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-6185a9bf0201bccff9370a2f0da38e522c3e70c70dec0034df19e0728278d3583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cold plate</topic><topic>Cooling</topic><topic>Cooling rate</topic><topic>Cooling systems</topic><topic>Economic models</topic><topic>Hybrid cooling</topic><topic>Hybrid systems</topic><topic>Liquid cooling</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Lithium-ion battery</topic><topic>Management systems</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical models</topic><topic>Phase change material</topic><topic>Phase change materials</topic><topic>Power consumption</topic><topic>Rechargeable batteries</topic><topic>Temperature gradients</topic><topic>Thermal analysis</topic><topic>Thermal management</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, R.</creatorcontrib><creatorcontrib>Liang, Z.</creatorcontrib><creatorcontrib>Souri, M.</creatorcontrib><creatorcontrib>Esfahani, M.N.</creatorcontrib><creatorcontrib>Jabbari, M.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, R.</au><au>Liang, Z.</au><au>Souri, M.</au><au>Esfahani, M.N.</au><au>Jabbari, M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2022-02</date><risdate>2022</risdate><volume>183</volume><spage>122095</spage><pages>122095-</pages><artnum>122095</artnum><issn>0017-9310</issn><eissn>1879-2189</eissn><abstract>•Optimisation of PCM based cooling coupled with liquid cooling system.•System weight and consumption of different configurations is evaluated.•Suggesting a 2-sided cold plates hybrid system for BTMS of pouch cells.•Suggested hybrid BTMS can withstand cell-to-cell variation of battery cells.
In this paper, a novel design for hybrid battery thermal management systems (BTMS) is proposed and evaluated from the economic and engineering perspectives. Numerical models are compared with phase change materials (PCM) BTMS. Further, the suggested hybrid cooling system’s thermal performance at the pack level is investigated considering cell-to-cell variation. A three-dimensional thermal model is used for the numerical simulation of the battery cooling system. The probability distributions is utilised for the cell-to-cell variations of a 168-cell battery pack. Results shows that for a 53 Ah lithium-ion battery (LIB) under a 5C discharge rate, a hybrid cooling system with two-sided cold plates can reduce the maximum temperature from ∼64 ∘C to 46.3 ∘C with acceptable system weight and power consumption, which is used for further pack level simulation. It is concluded that the two-sided cold plate hybrid design system can manage the maximum average temperature as well as temperature difference of cells in the desirable range at extreme cases.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2021.122095</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2022-02, Vol.183, p.122095, Article 122095 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_journals_2624987307 |
source | Elsevier ScienceDirect Journals Complete |
subjects | Cold plate Cooling Cooling rate Cooling systems Economic models Hybrid cooling Hybrid systems Liquid cooling Lithium Lithium-ion batteries Lithium-ion battery Management systems Mathematical models Numerical analysis Numerical models Phase change material Phase change materials Power consumption Rechargeable batteries Temperature gradients Thermal analysis Thermal management Three dimensional models |
title | Numerical analysis of lithium-ion battery thermal management system using phase change material assisted by liquid cooling method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-09T06%3A49%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20analysis%20of%20lithium-ion%20battery%20thermal%20management%20system%20using%20phase%20change%20material%20assisted%20by%20liquid%20cooling%20method&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Wang,%20R.&rft.date=2022-02&rft.volume=183&rft.spage=122095&rft.pages=122095-&rft.artnum=122095&rft.issn=0017-9310&rft.eissn=1879-2189&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2021.122095&rft_dat=%3Cproquest_cross%3E2624987307%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2624987307&rft_id=info:pmid/&rft_els_id=S0017931021012011&rfr_iscdi=true |