Selective Hydrothermal Synthesis of Water-Soluble CdTe and CdTe/CdS Colloidal Quantum Dots by Controlling the Te/Cd Molar Ratio of the Precursor Solution
During the synthesis of CdTe quantum dots (QDs) by the hydrothermal method, a CdS shell layer is naturally formed by the thermal decomposition of thiol ligands, and CdTe/CdS core/shell QDs are produced. Herein, we investigate the selective synthesis of CdTe and CdTe/CdS QDs to control the thermal de...
Gespeichert in:
Veröffentlicht in: | Bulletin of the Chemical Society of Japan 2021-12, Vol.94 (12), p.2880-2885 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | During the synthesis of CdTe quantum dots (QDs) by the hydrothermal method, a CdS shell layer is naturally formed by the thermal decomposition of thiol ligands, and CdTe/CdS core/shell QDs are produced. Herein, we investigate the selective synthesis of CdTe and CdTe/CdS QDs to control the thermal decomposition of thiol ligands by changing the Te/Cd molar ratio of the precursor solutions. From the experimental results of X-ray photoelectron spectroscopy and optical properties of absorption and photoluminescence (PL) spectra and PL decay profiles of the synthesized colloidal QDs, it was found that the formation of the CdS shell can be controlled by varying the Te/Cd ratio of the precursor solution. Thus, the selective synthesis of CdTe and CdTe/CdS QDs with the same PL energy but different PL decay times is possible. |
---|---|
ISSN: | 0009-2673 1348-0634 |
DOI: | 10.1246/bcsj.20210251 |