Surface Modification of Carbon Fiber Using a Titania Solution and the Mechanical Properties of CFRTP Fabricated Using That Method
Long molding times and the impossibility of remelting or reforming carbon fiber-reinforced plastics (CFRPs) that contain thermosetting resin after molding have led researchers to focus on carbon fiber-reinforced thermoplastics (CFRTPs) made with thermoplastic resin. Compared to CFRPs, CFRTPs are eas...
Gespeichert in:
Veröffentlicht in: | Journal of Textile Engineering 2021/10/15, Vol.67(5), pp.85-90 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Long molding times and the impossibility of remelting or reforming carbon fiber-reinforced plastics (CFRPs) that contain thermosetting resin after molding have led researchers to focus on carbon fiber-reinforced thermoplastics (CFRTPs) made with thermoplastic resin. Compared to CFRPs, CFRTPs are easier to recycle, but they generally exhibit strength properties that are inferior to those of CFRPs due to poor adhesion between the carbon fiber and the resin. To address this issue, we devised a new surface modification method (using a titania solution) to improve adhesion between fiber and the resin. Fragmentation and tensile tests were used to evaluate the effect of the surface modification method on CFRTP adhesion. The results indicate that surface modification can enhance adhesion in CFRTP, which may improve the material’s mechanical properties. |
---|---|
ISSN: | 1346-8235 1880-1986 |
DOI: | 10.4188/jte.67.85 |