Self-updated four-node finite element using deep learning

This paper introduces a new concept called self-updated finite element (SUFE). The finite element (FE) is activated through an iterative procedure to improve the solution accuracy without mesh refinement. A mode-based finite element formulation is devised for a four-node finite element and the assum...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2022, Vol.69 (1), p.23-44
Hauptverfasser: Jung, Jaeho, Jun, Hyungmin, Lee, Phill-Seung
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces a new concept called self-updated finite element (SUFE). The finite element (FE) is activated through an iterative procedure to improve the solution accuracy without mesh refinement. A mode-based finite element formulation is devised for a four-node finite element and the assumed modal strain is employed for bending modes. A search procedure for optimal bending directions is implemented through deep learning for a given element deformation to minimize shear locking. The proposed element is called a self-updated four-node finite element, for which an iterative solution procedure is developed. The element passes the patch and zero-energy mode tests. As the number of iterations increases, the finite element solutions become more and more accurate, resulting in significantly accurate solutions with a few iterations. The SUFE concept is very effective, especially when the meshes are coarse and severely distorted. Its excellent performance is demonstrated through various numerical examples.
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-021-02081-7