Heterogeneous Treatment Effect Estimation based on a Partially Linear Nonparametric Bayes Model

Recently, conditional average treatment effect (CATE) estimation has been attracting much attention due to its importance in various fields such as statistics, social and biomedical sciences. This study proposes a partially linear nonparametric Bayes model for the heterogeneous treatment effect esti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
1. Verfasser: Horii, Shunsuke
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently, conditional average treatment effect (CATE) estimation has been attracting much attention due to its importance in various fields such as statistics, social and biomedical sciences. This study proposes a partially linear nonparametric Bayes model for the heterogeneous treatment effect estimation. A partially linear model is a semiparametric model that consists of linear and nonparametric components in an additive form. A nonparametric Bayes model that uses a Gaussian process to model the nonparametric component has already been studied. However, this model cannot handle the heterogeneity of the treatment effect. In our proposed model, not only the nonparametric component of the model but also the heterogeneous treatment effect of the treatment variable is modeled by a Gaussian process prior. We derive the analytic form of the posterior distribution of the CATE and prove that the posterior has the consistency property. That is, it concentrates around the true distribution. We show the effectiveness of the proposed method through numerical experiments based on synthetic data.
ISSN:2331-8422