A sharp Bernstein–type inequality and application to the Carleson embedding theorem with matrix weights

We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted mart...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analysis and mathematical physics 2022-02, Vol.12 (1), Article 40
Hauptverfasser: Kraus, Daniela, Moucha, Annika, Roth, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted martingale Carleson embedding theorem with matrix weights. In the scalar case this new upper bound is optimal.
ISSN:1664-2368
1664-235X
DOI:10.1007/s13324-021-00639-5