A sharp Bernstein–type inequality and application to the Carleson embedding theorem with matrix weights
We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted mart...
Gespeichert in:
Veröffentlicht in: | Analysis and mathematical physics 2022-02, Vol.12 (1), Article 40 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove a sharp Bernstein-type inequality for complex polynomials which are positive and satisfy a polynomial growth condition on the positive real axis. This leads to an improved upper estimate in the recent work of Culiuc and Treil (Int. Math. Res. Not. 2019: 3301–3312, 2019) on the weighted martingale Carleson embedding theorem with matrix weights. In the scalar case this new upper bound is optimal. |
---|---|
ISSN: | 1664-2368 1664-235X |
DOI: | 10.1007/s13324-021-00639-5 |