Classical vs. non-Archimedean analysis: an approach via algebraic genericity

In this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and ana...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A, Matemáticas Físicas y Naturales. Serie A, Matemáticas, 2022-04, Vol.116 (2), Article 72
Hauptverfasser: Fernández-Sánchez, J., Maghsoudi, S., Rodríguez-Vidanes, D. L., Seoane-Sepúlveda, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we show new results and improvements of the non-Archimedean counterpart of classical analysis in the theory of lineability. Besides analyzing the algebraic genericity of sets of functions having properties regarding continuity, discontinuity, Lipschitzianity, differentiability and analyticity, we also study the lineability of sets of sequences having properties concerning boundedness and convergence. In particular we show (among several other results) the algebraic genericity of: (i) functions that do not satisfy Liouville’s theorem, (ii) sequences that do not satisfy the classical theorem of Cèsaro, or (iii) functionals that do not satisfy the classical Hahn–Banach theorem.
ISSN:1578-7303
1579-1505
DOI:10.1007/s13398-022-01209-5