Development of optimized memory based VLSI architecture with histogram analysis for image contrast enhancement

The natural scenarios show that the images which are taken under low light environments experiences weak luminosity and low-contrast issues frequently. One of the vital units of image contrast enhancement accelerator is a Histogram computation. In this paper, a new VLSI structure is developed for co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microprocessors and microsystems 2021-11, Vol.87, p.104357, Article 104357
Hauptverfasser: Koteswar Rao, Bonagiri, Babu, Kande Giri, Chandrasekhar Reddy, P.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The natural scenarios show that the images which are taken under low light environments experiences weak luminosity and low-contrast issues frequently. One of the vital units of image contrast enhancement accelerator is a Histogram computation. In this paper, a new VLSI structure is developed for contrast enhancement using optimized memory-based histogram analysis. Initially, a comparator-less parallel rank ordering filter is proposed to remove the noise in the pre-processing stage. Then, the pipelining and parallel process of the memory-based histogram analysis is enhanced by introducing an enhanced transient search optimization (ETSO) approach that selects suitable data to perform the data comparison process in the processing elements (PEs). In addition, a flexible digital comparators (FDC), pipelined structure of bilinear interpolation and reciprocal units are introduced in the proposed contrast enhancement accelerator to save area and power usage. Also, the histogram memory unit is designed by considering dual data flow with self-configurable characteristics for the selection of appropriate data flow in the contrast enhancement application. At last, the stated VLSI structures for both histogram computation and enhancement unit are implemented in FPGA for meeting their speed and resource constraints. The key factors of the proposed design are lowest delay of 5.256 ns and lower power consumption of 0.289 W against existing accelerators.
ISSN:0141-9331
1872-9436
DOI:10.1016/j.micpro.2021.104357