Chemical decarboxylation kinetics and identification of amino acid standards by benchtop NMR spectroscopy
In this paper, we examined the competence of amino acids as standards for instrumental biochemical analysis. The chosen amino acids were first dissolved in various aquatic solutions and then measured in a benchtop NMR spectrometer, which is not a common choice in such analytical investigations. Anal...
Gespeichert in:
Veröffentlicht in: | Chemical papers 2022-02, Vol.76 (2), p.879-888 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we examined the competence of amino acids as standards for instrumental biochemical analysis. The chosen amino acids were first dissolved in various aquatic solutions and then measured in a benchtop NMR spectrometer, which is not a common choice in such analytical investigations. Analysis by mass spectrometry was used in addition. As part of these investigations, we examined and determined the stability of the amino acids ornithine, glutamic acid, alanine, glycine, proline, pyroglutamic acid, phenylalanine and trans-4-hydroxy-D-proline under critical basic and acidic pH conditions and under various other conditions. We observed that not all solutions of the amino acid standards remain stable under the given conditions and a chemical transformation takes place. Given our findings by mass spectroscopy, additional kinetic measurements were carried out with the benchtop NMR spectrometer. We discovered that pyroglutamic acid becomes unstable under basic conditions and decarboxylates to pyrrolidone. |
---|---|
ISSN: | 0366-6352 1336-9075 2585-7290 |
DOI: | 10.1007/s11696-021-01906-2 |