An exact formula for a Lambert series associated to a cusp form and the Möbius function
In 1981, Zagier conjectured that the constant term of the automorphic form y 12 | Δ ( z ) | 2 , that is, a 0 ( y ) : = y 12 ∑ n = 1 ∞ τ 2 ( n ) exp ( - 4 π n y ) , where τ ( n ) is the n th Fourier coefficient of the Ramanujan cusp form Δ ( z ) , has an asymptotic expansion when y → 0 + and it can b...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-02, Vol.57 (2), p.769-784 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 784 |
---|---|
container_issue | 2 |
container_start_page | 769 |
container_title | The Ramanujan journal |
container_volume | 57 |
creator | Juyal, Abhishek Maji, Bibekananda Sathyanarayana, Sumukha |
description | In 1981, Zagier conjectured that the constant term of the automorphic form
y
12
|
Δ
(
z
)
|
2
, that is,
a
0
(
y
)
:
=
y
12
∑
n
=
1
∞
τ
2
(
n
)
exp
(
-
4
π
n
y
)
,
where
τ
(
n
)
is the
n
th Fourier coefficient of the Ramanujan cusp form
Δ
(
z
)
, has an asymptotic expansion when
y
→
0
+
and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function
ζ
(
s
)
. This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function
μ
(
n
)
. We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of
ζ
(
s
)
, and the error term is expressed as an infinite series involving the generalized hypergeometric series
2
F
1
(
a
,
b
;
c
;
z
)
. As an application of this exact form, we also establish an asymptotic expansion of the Lambert series. |
doi_str_mv | 10.1007/s11139-020-00375-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623430491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2623430491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-d3d682171c1555c9e041abc5801b72e65a0b87f086e639f6b61448fa1aa5f3c93</originalsourceid><addsrcrecordid>eNp9kM1KAzEUhYMoWKsv4CrgOnpvMplMlqX4BxU3Cu5CJk10SjtTkxnQF_MFfDHTjuDO1bnce8658BFyjnCJAOoqIaLQDDgwAKEkUwdkglJxpgWIwzyLirMCNByTk5RWAFBk34S8zFrqP6zraejiZljbnVJLF3ZT-9jT5GPjE7Upda6xvV_SvstnN6TtPkFtm1dvnj58f9XNkGgYWtc3XXtKjoJdJ3_2q1PyfHP9NL9ji8fb-_lswZxA3bOlWJYVR4UOpZROeyjQ1k5WgLXivpQW6koFqEpfCh3KusSiqIJFa2UQTospuRh7t7F7H3zqzaobYptfGl5yUQgoNGYXH10udilFH8w2NhsbPw2C2RE0I0GTCZo9QaNySIyhlM3tq49_1f-kfgCHtHMp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623430491</pqid></control><display><type>article</type><title>An exact formula for a Lambert series associated to a cusp form and the Möbius function</title><source>SpringerNature Journals</source><creator>Juyal, Abhishek ; Maji, Bibekananda ; Sathyanarayana, Sumukha</creator><creatorcontrib>Juyal, Abhishek ; Maji, Bibekananda ; Sathyanarayana, Sumukha</creatorcontrib><description>In 1981, Zagier conjectured that the constant term of the automorphic form
y
12
|
Δ
(
z
)
|
2
, that is,
a
0
(
y
)
:
=
y
12
∑
n
=
1
∞
τ
2
(
n
)
exp
(
-
4
π
n
y
)
,
where
τ
(
n
)
is the
n
th Fourier coefficient of the Ramanujan cusp form
Δ
(
z
)
, has an asymptotic expansion when
y
→
0
+
and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function
ζ
(
s
)
. This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function
μ
(
n
)
. We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of
ζ
(
s
)
, and the error term is expressed as an infinite series involving the generalized hypergeometric series
2
F
1
(
a
,
b
;
c
;
z
)
. As an application of this exact form, we also establish an asymptotic expansion of the Lambert series.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-020-00375-7</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Asymptotic series ; Combinatorics ; Cusps ; Field Theory and Polynomials ; Fourier Analysis ; Fourier series ; Functions of a Complex Variable ; Infinite series ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2022-02, Vol.57 (2), p.769-784</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-d3d682171c1555c9e041abc5801b72e65a0b87f086e639f6b61448fa1aa5f3c93</citedby><cites>FETCH-LOGICAL-c319t-d3d682171c1555c9e041abc5801b72e65a0b87f086e639f6b61448fa1aa5f3c93</cites><orcidid>0000-0003-2155-2480</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11139-020-00375-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11139-020-00375-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Juyal, Abhishek</creatorcontrib><creatorcontrib>Maji, Bibekananda</creatorcontrib><creatorcontrib>Sathyanarayana, Sumukha</creatorcontrib><title>An exact formula for a Lambert series associated to a cusp form and the Möbius function</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>In 1981, Zagier conjectured that the constant term of the automorphic form
y
12
|
Δ
(
z
)
|
2
, that is,
a
0
(
y
)
:
=
y
12
∑
n
=
1
∞
τ
2
(
n
)
exp
(
-
4
π
n
y
)
,
where
τ
(
n
)
is the
n
th Fourier coefficient of the Ramanujan cusp form
Δ
(
z
)
, has an asymptotic expansion when
y
→
0
+
and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function
ζ
(
s
)
. This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function
μ
(
n
)
. We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of
ζ
(
s
)
, and the error term is expressed as an infinite series involving the generalized hypergeometric series
2
F
1
(
a
,
b
;
c
;
z
)
. As an application of this exact form, we also establish an asymptotic expansion of the Lambert series.</description><subject>Asymptotic series</subject><subject>Combinatorics</subject><subject>Cusps</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Fourier series</subject><subject>Functions of a Complex Variable</subject><subject>Infinite series</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEUhYMoWKsv4CrgOnpvMplMlqX4BxU3Cu5CJk10SjtTkxnQF_MFfDHTjuDO1bnce8658BFyjnCJAOoqIaLQDDgwAKEkUwdkglJxpgWIwzyLirMCNByTk5RWAFBk34S8zFrqP6zraejiZljbnVJLF3ZT-9jT5GPjE7Upda6xvV_SvstnN6TtPkFtm1dvnj58f9XNkGgYWtc3XXtKjoJdJ3_2q1PyfHP9NL9ji8fb-_lswZxA3bOlWJYVR4UOpZROeyjQ1k5WgLXivpQW6koFqEpfCh3KusSiqIJFa2UQTospuRh7t7F7H3zqzaobYptfGl5yUQgoNGYXH10udilFH8w2NhsbPw2C2RE0I0GTCZo9QaNySIyhlM3tq49_1f-kfgCHtHMp</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Juyal, Abhishek</creator><creator>Maji, Bibekananda</creator><creator>Sathyanarayana, Sumukha</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2155-2480</orcidid></search><sort><creationdate>20220201</creationdate><title>An exact formula for a Lambert series associated to a cusp form and the Möbius function</title><author>Juyal, Abhishek ; Maji, Bibekananda ; Sathyanarayana, Sumukha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-d3d682171c1555c9e041abc5801b72e65a0b87f086e639f6b61448fa1aa5f3c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Asymptotic series</topic><topic>Combinatorics</topic><topic>Cusps</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Fourier series</topic><topic>Functions of a Complex Variable</topic><topic>Infinite series</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Juyal, Abhishek</creatorcontrib><creatorcontrib>Maji, Bibekananda</creatorcontrib><creatorcontrib>Sathyanarayana, Sumukha</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Juyal, Abhishek</au><au>Maji, Bibekananda</au><au>Sathyanarayana, Sumukha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An exact formula for a Lambert series associated to a cusp form and the Möbius function</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>57</volume><issue>2</issue><spage>769</spage><epage>784</epage><pages>769-784</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>In 1981, Zagier conjectured that the constant term of the automorphic form
y
12
|
Δ
(
z
)
|
2
, that is,
a
0
(
y
)
:
=
y
12
∑
n
=
1
∞
τ
2
(
n
)
exp
(
-
4
π
n
y
)
,
where
τ
(
n
)
is the
n
th Fourier coefficient of the Ramanujan cusp form
Δ
(
z
)
, has an asymptotic expansion when
y
→
0
+
and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function
ζ
(
s
)
. This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function
μ
(
n
)
. We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of
ζ
(
s
)
, and the error term is expressed as an infinite series involving the generalized hypergeometric series
2
F
1
(
a
,
b
;
c
;
z
)
. As an application of this exact form, we also establish an asymptotic expansion of the Lambert series.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-020-00375-7</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-2155-2480</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1382-4090 |
ispartof | The Ramanujan journal, 2022-02, Vol.57 (2), p.769-784 |
issn | 1382-4090 1572-9303 |
language | eng |
recordid | cdi_proquest_journals_2623430491 |
source | SpringerNature Journals |
subjects | Asymptotic series Combinatorics Cusps Field Theory and Polynomials Fourier Analysis Fourier series Functions of a Complex Variable Infinite series Mathematics Mathematics and Statistics Number Theory |
title | An exact formula for a Lambert series associated to a cusp form and the Möbius function |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A39%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20exact%20formula%20for%20a%20Lambert%20series%20associated%20to%20a%20cusp%20form%20and%20the%20M%C3%B6bius%20function&rft.jtitle=The%20Ramanujan%20journal&rft.au=Juyal,%20Abhishek&rft.date=2022-02-01&rft.volume=57&rft.issue=2&rft.spage=769&rft.epage=784&rft.pages=769-784&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-020-00375-7&rft_dat=%3Cproquest_cross%3E2623430491%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623430491&rft_id=info:pmid/&rfr_iscdi=true |