An exact formula for a Lambert series associated to a cusp form and the Möbius function

In 1981, Zagier conjectured that the constant term of the automorphic form y 12 | Δ ( z ) | 2 , that is, a 0 ( y ) : = y 12 ∑ n = 1 ∞ τ 2 ( n ) exp ( - 4 π n y ) , where τ ( n ) is the n th Fourier coefficient of the Ramanujan cusp form Δ ( z ) , has an asymptotic expansion when y → 0 + and it can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2022-02, Vol.57 (2), p.769-784
Hauptverfasser: Juyal, Abhishek, Maji, Bibekananda, Sathyanarayana, Sumukha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In 1981, Zagier conjectured that the constant term of the automorphic form y 12 | Δ ( z ) | 2 , that is, a 0 ( y ) : = y 12 ∑ n = 1 ∞ τ 2 ( n ) exp ( - 4 π n y ) , where τ ( n ) is the n th Fourier coefficient of the Ramanujan cusp form Δ ( z ) , has an asymptotic expansion when y → 0 + and it can be expressed in terms of the non-trivial zeros of the Riemann zeta function ζ ( s ) . This conjecture was settled by Hafner and Stopple, and later Chakraborty, Kanemitsu, and the second author have extended this result for any Hecke eigenform over the full modular group. In this paper, we investigate a Lambert series associated to the Fourier coefficients of a cusp form and the Möbius function μ ( n ) . We present an exact formula for the Lambert series and interestingly the main term is in terms of the non-trivial zeros of ζ ( s ) , and the error term is expressed as an infinite series involving the generalized hypergeometric series 2 F 1 ( a , b ; c ; z ) . As an application of this exact form, we also establish an asymptotic expansion of the Lambert series.
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-020-00375-7