Certain eta-quotients and ℓ-regular overpartitions
Let A ¯ ℓ ( n ) be the number of overpartitions of n into parts not divisible by ℓ . In this paper, we prove that A ¯ ℓ ( n ) is almost always divisible by p i j if p i 2 a i ≥ ℓ , where j is a fixed positive integer and ℓ = p 1 a 1 p 2 a 2 ⋯ p m a m with primes p i > 3 . We obtain a Ramanujan-ty...
Gespeichert in:
Veröffentlicht in: | The Ramanujan journal 2022-02, Vol.57 (2), p.453-470 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
A
¯
ℓ
(
n
)
be the number of overpartitions of
n
into parts not divisible by
ℓ
. In this paper, we prove that
A
¯
ℓ
(
n
)
is almost always divisible by
p
i
j
if
p
i
2
a
i
≥
ℓ
, where
j
is a fixed positive integer and
ℓ
=
p
1
a
1
p
2
a
2
⋯
p
m
a
m
with primes
p
i
>
3
. We obtain a Ramanujan-type congruence for
A
¯
7
modulo 7. We also exhibit infinite families of congruences and multiplicative identities for
A
¯
5
(
n
)
. |
---|---|
ISSN: | 1382-4090 1572-9303 |
DOI: | 10.1007/s11139-020-00322-6 |