Certain eta-quotients and ℓ-regular overpartitions

Let A ¯ ℓ ( n ) be the number of overpartitions of n into parts not divisible by ℓ . In this paper, we prove that A ¯ ℓ ( n ) is almost always divisible by p i j if p i 2 a i ≥ ℓ , where j is a fixed positive integer and ℓ = p 1 a 1 p 2 a 2 ⋯ p m a m with primes p i > 3 . We obtain a Ramanujan-ty...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Ramanujan journal 2022-02, Vol.57 (2), p.453-470
Hauptverfasser: Ray, Chiranjit, Chakraborty, Kalyan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A ¯ ℓ ( n ) be the number of overpartitions of n into parts not divisible by ℓ . In this paper, we prove that A ¯ ℓ ( n ) is almost always divisible by p i j if p i 2 a i ≥ ℓ , where j is a fixed positive integer and ℓ = p 1 a 1 p 2 a 2 ⋯ p m a m with primes p i > 3 . We obtain a Ramanujan-type congruence for A ¯ 7 modulo 7. We also exhibit infinite families of congruences and multiplicative identities for A ¯ 5 ( n ) .
ISSN:1382-4090
1572-9303
DOI:10.1007/s11139-020-00322-6