Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing
Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performanc...
Gespeichert in:
Veröffentlicht in: | Sensors and actuators. B, Chemical Chemical, 2022-01, Vol.351, p.130951, Article 130951 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | 130951 |
container_title | Sensors and actuators. B, Chemical |
container_volume | 351 |
creator | Shin, Seo Young Jang, Mingu Cheon, Hyeong Jun Go, Seongmoon Yoon, Hyeonseok Chang, Mincheol |
description | Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs.
[Display omitted]
•Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors. |
doi_str_mv | 10.1016/j.snb.2021.130951 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623039441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400521015197</els_id><sourcerecordid>2623039441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</originalsourceid><addsrcrecordid>eNp9kM2K2zAURsUwhWbSeYDZCbp2eiX5J2ZWJbQzhTCzaddClq8SGVtyJTmQh-g7VyZddyUuOt93L4eQJwY7Bqz-Muyi63YcONsxAW3F7siG7RtRCGiae7KBlldFCVB9JA8xDgBQiho25M-bcj6msOi0BCxUjDYm7Gn04wVdohc1-0CVc6hG607UG6q9G5aTWqnZj9cJA01n66ix4xSpyTi6s3J6_ceQ52kdaCYuflTJjkh9OClnda6aZr-4vA5dzPWfyAejxoiP_94t-fX928_Da3F8f_lx-HostOBVKgxCpSqmsWzatmcKdWe0wr4WfSPaEljXdwY71UHVNzVvTMMMZ7yu96JtVWa25POtdw7-94IxycEvweWVktdcQC4pWabYjdLBxxjQyDnYSYWrZCBX63KQ2bpcrcub9Zx5vmUwn3-xGGTUFlcZNqBOsvf2P-m_8AeO-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623039441</pqid></control><display><type>article</type><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</creator><creatorcontrib>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</creatorcontrib><description>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs.
[Display omitted]
•Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2021.130951</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Atomic force microscopy ; Carrier mobility ; Charge transport ; Conjugated polymers ; Current carriers ; Field effect transistors ; Gas sensors ; Microscopy ; Morphology ; Nanocrystals ; Nanorods ; Nanostructure ; Nanowires ; Optical microscopy ; Performance enhancement ; Poly(3-hexylthiophene) ; Polymer films ; Polymers ; Semiconductor devices ; Sensors ; Solvent vapor annealing ; Solvents ; Thin films ; Transport properties ; Ultraviolet radiation ; VOCs ; Volatile organic compounds</subject><ispartof>Sensors and actuators. B, Chemical, 2022-01, Vol.351, p.130951, Article 130951</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</citedby><cites>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2021.130951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shin, Seo Young</creatorcontrib><creatorcontrib>Jang, Mingu</creatorcontrib><creatorcontrib>Cheon, Hyeong Jun</creatorcontrib><creatorcontrib>Go, Seongmoon</creatorcontrib><creatorcontrib>Yoon, Hyeonseok</creatorcontrib><creatorcontrib>Chang, Mincheol</creatorcontrib><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><title>Sensors and actuators. B, Chemical</title><description>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs.
[Display omitted]
•Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</description><subject>Annealing</subject><subject>Atomic force microscopy</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Conjugated polymers</subject><subject>Current carriers</subject><subject>Field effect transistors</subject><subject>Gas sensors</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Optical microscopy</subject><subject>Performance enhancement</subject><subject>Poly(3-hexylthiophene)</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Sensors</subject><subject>Solvent vapor annealing</subject><subject>Solvents</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>Ultraviolet radiation</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM2K2zAURsUwhWbSeYDZCbp2eiX5J2ZWJbQzhTCzaddClq8SGVtyJTmQh-g7VyZddyUuOt93L4eQJwY7Bqz-Muyi63YcONsxAW3F7siG7RtRCGiae7KBlldFCVB9JA8xDgBQiho25M-bcj6msOi0BCxUjDYm7Gn04wVdohc1-0CVc6hG607UG6q9G5aTWqnZj9cJA01n66ix4xSpyTi6s3J6_ceQ52kdaCYuflTJjkh9OClnda6aZr-4vA5dzPWfyAejxoiP_94t-fX928_Da3F8f_lx-HostOBVKgxCpSqmsWzatmcKdWe0wr4WfSPaEljXdwY71UHVNzVvTMMMZ7yu96JtVWa25POtdw7-94IxycEvweWVktdcQC4pWabYjdLBxxjQyDnYSYWrZCBX63KQ2bpcrcub9Zx5vmUwn3-xGGTUFlcZNqBOsvf2P-m_8AeO-g</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Shin, Seo Young</creator><creator>Jang, Mingu</creator><creator>Cheon, Hyeong Jun</creator><creator>Go, Seongmoon</creator><creator>Yoon, Hyeonseok</creator><creator>Chang, Mincheol</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220115</creationdate><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><author>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Atomic force microscopy</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Conjugated polymers</topic><topic>Current carriers</topic><topic>Field effect transistors</topic><topic>Gas sensors</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Optical microscopy</topic><topic>Performance enhancement</topic><topic>Poly(3-hexylthiophene)</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Sensors</topic><topic>Solvent vapor annealing</topic><topic>Solvents</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>Ultraviolet radiation</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Seo Young</creatorcontrib><creatorcontrib>Jang, Mingu</creatorcontrib><creatorcontrib>Cheon, Hyeong Jun</creatorcontrib><creatorcontrib>Go, Seongmoon</creatorcontrib><creatorcontrib>Yoon, Hyeonseok</creatorcontrib><creatorcontrib>Chang, Mincheol</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Seo Young</au><au>Jang, Mingu</au><au>Cheon, Hyeong Jun</au><au>Go, Seongmoon</au><au>Yoon, Hyeonseok</au><au>Chang, Mincheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>351</volume><spage>130951</spage><pages>130951-</pages><artnum>130951</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs.
[Display omitted]
•Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2021.130951</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0925-4005 |
ispartof | Sensors and actuators. B, Chemical, 2022-01, Vol.351, p.130951, Article 130951 |
issn | 0925-4005 1873-3077 |
language | eng |
recordid | cdi_proquest_journals_2623039441 |
source | Access via ScienceDirect (Elsevier) |
subjects | Annealing Atomic force microscopy Carrier mobility Charge transport Conjugated polymers Current carriers Field effect transistors Gas sensors Microscopy Morphology Nanocrystals Nanorods Nanostructure Nanowires Optical microscopy Performance enhancement Poly(3-hexylthiophene) Polymer films Polymers Semiconductor devices Sensors Solvent vapor annealing Solvents Thin films Transport properties Ultraviolet radiation VOCs Volatile organic compounds |
title | Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructure-assisted%20solvent%20vapor%20annealing%20of%20conjugated%20polymer%20thin%20films%20for%20enhanced%20performance%20in%20volatile%20organic%20compound%20sensing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Shin,%20Seo%20Young&rft.date=2022-01-15&rft.volume=351&rft.spage=130951&rft.pages=130951-&rft.artnum=130951&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2021.130951&rft_dat=%3Cproquest_cross%3E2623039441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623039441&rft_id=info:pmid/&rft_els_id=S0925400521015197&rfr_iscdi=true |