Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing

Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sensors and actuators. B, Chemical Chemical, 2022-01, Vol.351, p.130951, Article 130951
Hauptverfasser: Shin, Seo Young, Jang, Mingu, Cheon, Hyeong Jun, Go, Seongmoon, Yoon, Hyeonseok, Chang, Mincheol
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page 130951
container_title Sensors and actuators. B, Chemical
container_volume 351
creator Shin, Seo Young
Jang, Mingu
Cheon, Hyeong Jun
Go, Seongmoon
Yoon, Hyeonseok
Chang, Mincheol
description Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs. [Display omitted] •Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.
doi_str_mv 10.1016/j.snb.2021.130951
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2623039441</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0925400521015197</els_id><sourcerecordid>2623039441</sourcerecordid><originalsourceid>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</originalsourceid><addsrcrecordid>eNp9kM2K2zAURsUwhWbSeYDZCbp2eiX5J2ZWJbQzhTCzaddClq8SGVtyJTmQh-g7VyZddyUuOt93L4eQJwY7Bqz-Muyi63YcONsxAW3F7siG7RtRCGiae7KBlldFCVB9JA8xDgBQiho25M-bcj6msOi0BCxUjDYm7Gn04wVdohc1-0CVc6hG607UG6q9G5aTWqnZj9cJA01n66ix4xSpyTi6s3J6_ceQ52kdaCYuflTJjkh9OClnda6aZr-4vA5dzPWfyAejxoiP_94t-fX928_Da3F8f_lx-HostOBVKgxCpSqmsWzatmcKdWe0wr4WfSPaEljXdwY71UHVNzVvTMMMZ7yu96JtVWa25POtdw7-94IxycEvweWVktdcQC4pWabYjdLBxxjQyDnYSYWrZCBX63KQ2bpcrcub9Zx5vmUwn3-xGGTUFlcZNqBOsvf2P-m_8AeO-g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2623039441</pqid></control><display><type>article</type><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><source>Access via ScienceDirect (Elsevier)</source><creator>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</creator><creatorcontrib>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</creatorcontrib><description>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs. [Display omitted] •Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</description><identifier>ISSN: 0925-4005</identifier><identifier>EISSN: 1873-3077</identifier><identifier>DOI: 10.1016/j.snb.2021.130951</identifier><language>eng</language><publisher>Lausanne: Elsevier B.V</publisher><subject>Annealing ; Atomic force microscopy ; Carrier mobility ; Charge transport ; Conjugated polymers ; Current carriers ; Field effect transistors ; Gas sensors ; Microscopy ; Morphology ; Nanocrystals ; Nanorods ; Nanostructure ; Nanowires ; Optical microscopy ; Performance enhancement ; Poly(3-hexylthiophene) ; Polymer films ; Polymers ; Semiconductor devices ; Sensors ; Solvent vapor annealing ; Solvents ; Thin films ; Transport properties ; Ultraviolet radiation ; VOCs ; Volatile organic compounds</subject><ispartof>Sensors and actuators. B, Chemical, 2022-01, Vol.351, p.130951, Article 130951</ispartof><rights>2021 Elsevier B.V.</rights><rights>Copyright Elsevier Science Ltd. Jan 15, 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</citedby><cites>FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.snb.2021.130951$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Shin, Seo Young</creatorcontrib><creatorcontrib>Jang, Mingu</creatorcontrib><creatorcontrib>Cheon, Hyeong Jun</creatorcontrib><creatorcontrib>Go, Seongmoon</creatorcontrib><creatorcontrib>Yoon, Hyeonseok</creatorcontrib><creatorcontrib>Chang, Mincheol</creatorcontrib><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><title>Sensors and actuators. B, Chemical</title><description>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs. [Display omitted] •Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</description><subject>Annealing</subject><subject>Atomic force microscopy</subject><subject>Carrier mobility</subject><subject>Charge transport</subject><subject>Conjugated polymers</subject><subject>Current carriers</subject><subject>Field effect transistors</subject><subject>Gas sensors</subject><subject>Microscopy</subject><subject>Morphology</subject><subject>Nanocrystals</subject><subject>Nanorods</subject><subject>Nanostructure</subject><subject>Nanowires</subject><subject>Optical microscopy</subject><subject>Performance enhancement</subject><subject>Poly(3-hexylthiophene)</subject><subject>Polymer films</subject><subject>Polymers</subject><subject>Semiconductor devices</subject><subject>Sensors</subject><subject>Solvent vapor annealing</subject><subject>Solvents</subject><subject>Thin films</subject><subject>Transport properties</subject><subject>Ultraviolet radiation</subject><subject>VOCs</subject><subject>Volatile organic compounds</subject><issn>0925-4005</issn><issn>1873-3077</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM2K2zAURsUwhWbSeYDZCbp2eiX5J2ZWJbQzhTCzaddClq8SGVtyJTmQh-g7VyZddyUuOt93L4eQJwY7Bqz-Muyi63YcONsxAW3F7siG7RtRCGiae7KBlldFCVB9JA8xDgBQiho25M-bcj6msOi0BCxUjDYm7Gn04wVdohc1-0CVc6hG607UG6q9G5aTWqnZj9cJA01n66ix4xSpyTi6s3J6_ceQ52kdaCYuflTJjkh9OClnda6aZr-4vA5dzPWfyAejxoiP_94t-fX928_Da3F8f_lx-HostOBVKgxCpSqmsWzatmcKdWe0wr4WfSPaEljXdwY71UHVNzVvTMMMZ7yu96JtVWa25POtdw7-94IxycEvweWVktdcQC4pWabYjdLBxxjQyDnYSYWrZCBX63KQ2bpcrcub9Zx5vmUwn3-xGGTUFlcZNqBOsvf2P-m_8AeO-g</recordid><startdate>20220115</startdate><enddate>20220115</enddate><creator>Shin, Seo Young</creator><creator>Jang, Mingu</creator><creator>Cheon, Hyeong Jun</creator><creator>Go, Seongmoon</creator><creator>Yoon, Hyeonseok</creator><creator>Chang, Mincheol</creator><general>Elsevier B.V</general><general>Elsevier Science Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20220115</creationdate><title>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</title><author>Shin, Seo Young ; Jang, Mingu ; Cheon, Hyeong Jun ; Go, Seongmoon ; Yoon, Hyeonseok ; Chang, Mincheol</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c325t-fe05a51ce4799d1aecbfcaed63d739401bdbfebab05d7627f71f212668399ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Atomic force microscopy</topic><topic>Carrier mobility</topic><topic>Charge transport</topic><topic>Conjugated polymers</topic><topic>Current carriers</topic><topic>Field effect transistors</topic><topic>Gas sensors</topic><topic>Microscopy</topic><topic>Morphology</topic><topic>Nanocrystals</topic><topic>Nanorods</topic><topic>Nanostructure</topic><topic>Nanowires</topic><topic>Optical microscopy</topic><topic>Performance enhancement</topic><topic>Poly(3-hexylthiophene)</topic><topic>Polymer films</topic><topic>Polymers</topic><topic>Semiconductor devices</topic><topic>Sensors</topic><topic>Solvent vapor annealing</topic><topic>Solvents</topic><topic>Thin films</topic><topic>Transport properties</topic><topic>Ultraviolet radiation</topic><topic>VOCs</topic><topic>Volatile organic compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shin, Seo Young</creatorcontrib><creatorcontrib>Jang, Mingu</creatorcontrib><creatorcontrib>Cheon, Hyeong Jun</creatorcontrib><creatorcontrib>Go, Seongmoon</creatorcontrib><creatorcontrib>Yoon, Hyeonseok</creatorcontrib><creatorcontrib>Chang, Mincheol</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Sensors and actuators. B, Chemical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shin, Seo Young</au><au>Jang, Mingu</au><au>Cheon, Hyeong Jun</au><au>Go, Seongmoon</au><au>Yoon, Hyeonseok</au><au>Chang, Mincheol</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing</atitle><jtitle>Sensors and actuators. B, Chemical</jtitle><date>2022-01-15</date><risdate>2022</risdate><volume>351</volume><spage>130951</spage><pages>130951-</pages><artnum>130951</artnum><issn>0925-4005</issn><eissn>1873-3077</eissn><abstract>Controlling both the charge transport properties and morphologies of conjugated polymer (CP) films is critical for the practical use of CP-based organic field-effect transistor (OFET) sensors in diverse applications. Herein, we report a facile processing strategy for improving the sensing performance of OFET-based volatile organic compound (VOC) sensors, which significantly enhances charge transport and increases the surface-to-volume ratio of conjugated polymer thin films using solvent vapor annealing (SVA) in the presence of pre-formed nanostructures (PNs) on the films. In this study, two different PN-embedded poly(3-hexylthiophene) (P3HT) films, viz. PN1-P3HT and PN2-P3HT, were obtained from a sonication-treated P3HT solution with nanocrystals (NCs) and nanorods (NRs) and UV-light-irradiated P3HT solution with NCs and nanowires (NWs), respectively. The effect of SVA on the morphologies and charge transport of the PN-embedded P3HT films was systematically studied by atomic force microscopy, polarized optical microscopy, X-ray diffraction analysis, and charge-carrier mobility measurements. Gas sensing measurements were performed by exposing the sensors to VOCs in a concentration range of 1–100 ppm. After SVA, longer, one-dimensional P3HT nanostructures were formed in the PN-embedded films, while some small nanostructures appeared in the pristine P3HT films. Consequently, the PN2-P3HT OFETs exhibited a significant enhancement (2-fold) in charge transport and an increase (1.7-fold) in the surface-to-volume ratio after the SVA. Furthermore, the OFET sensors exhibited excellent responsivities (20–70%) and rapid response/recovery times (110–160 s) in the detection of VOCs. [Display omitted] •Pre-formed nanostructures (PNs) facilitate polymer chain reorganization via SVA.•P3HT films with PNs (PN-P3HT) exhibit excellent charge transport after SVA.•PN-P3HT films exhibit a large increase in the surface-to-volume ratio after SVA.•OFET sensors based on SVA-treated PN-P3HT exhibit excellent responsivity to VOCs.•The OFET sensors exhibit rapid response and recovery behaviors.</abstract><cop>Lausanne</cop><pub>Elsevier B.V</pub><doi>10.1016/j.snb.2021.130951</doi></addata></record>
fulltext fulltext
identifier ISSN: 0925-4005
ispartof Sensors and actuators. B, Chemical, 2022-01, Vol.351, p.130951, Article 130951
issn 0925-4005
1873-3077
language eng
recordid cdi_proquest_journals_2623039441
source Access via ScienceDirect (Elsevier)
subjects Annealing
Atomic force microscopy
Carrier mobility
Charge transport
Conjugated polymers
Current carriers
Field effect transistors
Gas sensors
Microscopy
Morphology
Nanocrystals
Nanorods
Nanostructure
Nanowires
Optical microscopy
Performance enhancement
Poly(3-hexylthiophene)
Polymer films
Polymers
Semiconductor devices
Sensors
Solvent vapor annealing
Solvents
Thin films
Transport properties
Ultraviolet radiation
VOCs
Volatile organic compounds
title Nanostructure-assisted solvent vapor annealing of conjugated polymer thin films for enhanced performance in volatile organic compound sensing
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T22%3A11%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanostructure-assisted%20solvent%20vapor%20annealing%20of%20conjugated%20polymer%20thin%20films%20for%20enhanced%20performance%20in%20volatile%20organic%20compound%20sensing&rft.jtitle=Sensors%20and%20actuators.%20B,%20Chemical&rft.au=Shin,%20Seo%20Young&rft.date=2022-01-15&rft.volume=351&rft.spage=130951&rft.pages=130951-&rft.artnum=130951&rft.issn=0925-4005&rft.eissn=1873-3077&rft_id=info:doi/10.1016/j.snb.2021.130951&rft_dat=%3Cproquest_cross%3E2623039441%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2623039441&rft_id=info:pmid/&rft_els_id=S0925400521015197&rfr_iscdi=true