Rock Glacier Characteristics Under Semiarid Climate Conditions in the Western Nyainqêntanglha Range, Tibetan Plateau

Rock glaciers are receiving increased attention as a potential source of water and indicator of climate change in periglacial landscapes. They consist of an ice‐debris mixture, which creeps downslope. Although rock glaciers are a wide‐spread feature on the Tibetan Plateau, characteristics such as it...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Earth surface 2022-01, Vol.127 (1), p.n/a
Hauptverfasser: Buckel, Johannes, Reinosch, Eike, Voigtländer, Anne, Dietze, Michael, Bücker, Matthias, Krebs, Nora, Schroeckh, Ruben, Mäusbacher, Roland, Hördt, Andreas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Rock glaciers are receiving increased attention as a potential source of water and indicator of climate change in periglacial landscapes. They consist of an ice‐debris mixture, which creeps downslope. Although rock glaciers are a wide‐spread feature on the Tibetan Plateau, characteristics such as its ice fraction are unknown as a superficial debris layer inhibits remote assessments. We investigate one rock glacier in the semiarid western Nyainqêntanglha range (WNR) with a multi‐method approach, which combines geophysical, geological and geomorphological field investigations with remote sensing techniques. Long‐term kinematics of the rock glacier are detected by 4‐year InSAR time series analysis. The ice content and the active layer are examined by electrical resistivity tomography, ground penetrating radar, and environmental seismology. Short‐term activity (11‐days) is captured by a seismic network. Clast analysis shows a sorting of the rock glacier's debris. The rock glacier has three zones, which are defined by the following characteristics: (a) Two predominant lithology types are preserved separately in the superficial debris patterns, (b) heterogeneous kinematics and seismic activity, and (c) distinct ice fractions. Conceptually, the studied rock glacier is discussed as an endmember of the glacier—debris‐covered glacier—rock glacier continuum. This, in turn, can be linked to its location on the semiarid lee‐side of the mountain range against the Indian summer monsoon. Geologically preconditioned and glacially overprinted, the studied rock glacier is suggested to be a recurring example for similar rock glaciers in the WNR. This study highlights how geology, topography and climate influence rock glacier characteristics and development. Plain Language Summary Climate change has begun to impact all regions of our planet. In cold regions, such as high‐mountain areas, rising temperatures lead to massive melting of glaciers. Besides this evident loss of ice, permafrost, a long‐term ice resource hidden in the subsurface, has started to thaw. Rock glaciers as visible permafrost‐related landforms consist of an ice‐debris mixture, which makes them creep downslope. Due to this movement and their recognizable shape, rock glaciers are permafrost indicators in high‐mountain areas. We investigate one rock glacier in the western Nyaingêntanglha Range (Tibetan Plateau) using field and remote sensing methods to understand its development and to know the current state of
ISSN:2169-9003
2169-9011
DOI:10.1029/2021JF006256