Exploring domains, clinical implications and environmental associations of a deep learning marker of biological ageing
Deep Neural Networks (DNN) have been recently developed for the estimation of Biological Age (BA), the hypothetical underlying age of an organism, which can differ from its chronological age (CA). Although promising, these population-specific algorithms warrant further characterization and validatio...
Gespeichert in:
Veröffentlicht in: | European journal of epidemiology 2022, Vol.37 (1), p.35-48 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Deep Neural Networks (DNN) have been recently developed for the estimation of Biological Age (BA), the hypothetical underlying age of an organism, which can differ from its chronological age (CA). Although promising, these population-specific algorithms warrant further characterization and validation, since their biological, clinical and environmental correlates remain largely unexplored. Here, an accurate DNN was trained to compute BA based on 36 circulating biomarkers in an Italian population (N = 23,858; age ≥ 35 years; 51.7% women). This estimate was heavily influenced by markers of metabolic, heart, kidney and liver function. The resulting Δage (BA–CA) significantly predicted mortality and hospitalization risk for all and specific causes. Slowed biological aging (Δage 0) was associated with smoking and obesity. Together, lifestyles and socioeconomic variables explained ~48% of the total variance in Δage, potentially suggesting the existence of a genetic basis. These findings validate blood-based biological aging as a marker of public health in adult Italians and provide a robust body of knowledge on its biological architecture, clinical implications and potential environmental influences. |
---|---|
ISSN: | 0393-2990 1573-7284 |
DOI: | 10.1007/s10654-021-00797-7 |