Toeplitz and related operators on polyanalytic Fock spaces
We give a characterization of compact and Fredholm operators on polyanalytic Fock spaces in terms of limit operators. As an application we obtain a generalization of the Bauer-Isralowitz theorem using a matrix valued Berezin type transform. We then apply this theorem to Toeplitz and Hankel operators...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-09 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We give a characterization of compact and Fredholm operators on polyanalytic Fock spaces in terms of limit operators. As an application we obtain a generalization of the Bauer-Isralowitz theorem using a matrix valued Berezin type transform. We then apply this theorem to Toeplitz and Hankel operators to obtain necessary and sufficient conditions for compactness. As it turns out, whether or not a Toeplitz or Hankel operator is compact does not depend on the polyanalytic order. For Hankel operators this even holds on the true polyanalytic Fock spaces. |
---|---|
ISSN: | 2331-8422 |