Concentration, thermodynamic density of states, and entropy of electrons in semiconductor nanowires

Approximate equations for the concentration of charge carriers, the thermodynamic density of states, and the entropy of electrons in semiconductor nanowires are obtained. To find the charge carrier concentration, the equation for the total number of particles was used. Using various approximate expr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Low temperature physics (Woodbury, N.Y.) N.Y.), 2022-02, Vol.48 (2), p.148-156
Hauptverfasser: Gulyamov, G., Davlatov, A. B., Juraev, Kh. N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Approximate equations for the concentration of charge carriers, the thermodynamic density of states, and the entropy of electrons in semiconductor nanowires are obtained. To find the charge carrier concentration, the equation for the total number of particles was used. Using various approximate expressions for the Fermi–Dirac distribution function, approximate equations for charge carrier concentration, thermodynamic density of states, and entropy are obtained, and graphs of their dependences on the chemical potential at different temperatures are constructed and analyzed. The graphs of the temperature dependence of the chemical potential are presented and analyzed. Using the thermodynamic density of states, the temperature dependences of the energy levels and the thermal coefficients of changes in these levels are obtained.
ISSN:1063-777X
1090-6517
DOI:10.1063/10.0009295