On the variable Wiener–Szeged inequality

In this note, we use a technique introduced by Klavžar et al. (1996) to obtain a strengthening of well-known inequality between the Szeged and Wiener indices. To be more precise, we will prove that if G is a connected graph and α>1, then ∑e=uv∈E(G)(ne(u)ne(v))α≥∑{u,v}⊆V(G)d(u,v)α and equality hol...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete Applied Mathematics 2022-01, Vol.307, p.15-18
Hauptverfasser: Vukićević, Žana Kovijanić, Bulatović, Luka
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this note, we use a technique introduced by Klavžar et al. (1996) to obtain a strengthening of well-known inequality between the Szeged and Wiener indices. To be more precise, we will prove that if G is a connected graph and α>1, then ∑e=uv∈E(G)(ne(u)ne(v))α≥∑{u,v}⊆V(G)d(u,v)α and equality holds if and only if G is complete.
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2021.10.007