On the variable Wiener–Szeged inequality
In this note, we use a technique introduced by Klavžar et al. (1996) to obtain a strengthening of well-known inequality between the Szeged and Wiener indices. To be more precise, we will prove that if G is a connected graph and α>1, then ∑e=uv∈E(G)(ne(u)ne(v))α≥∑{u,v}⊆V(G)d(u,v)α and equality hol...
Gespeichert in:
Veröffentlicht in: | Discrete Applied Mathematics 2022-01, Vol.307, p.15-18 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this note, we use a technique introduced by Klavžar et al. (1996) to obtain a strengthening of well-known inequality between the Szeged and Wiener indices. To be more precise, we will prove that if G is a connected graph and α>1, then ∑e=uv∈E(G)(ne(u)ne(v))α≥∑{u,v}⊆V(G)d(u,v)α and equality holds if and only if G is complete. |
---|---|
ISSN: | 0166-218X 1872-6771 |
DOI: | 10.1016/j.dam.2021.10.007 |