Automating turbulence modelling by multi-agent reinforcement learning
Turbulent flow models are critical for applications such as aircraft design, weather forecasting and climate prediction. Existing models are largely based on physical insight and engineering intuition. More recently, machine learning has been contributing to this endeavour with promising results. Ho...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2021-01, Vol.3 (1), p.87-96 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Turbulent flow models are critical for applications such as aircraft design, weather forecasting and climate prediction. Existing models are largely based on physical insight and engineering intuition. More recently, machine learning has been contributing to this endeavour with promising results. However, all efforts have focused on supervised learning, which is difficult to generalize beyond training data. Here we introduce multi-agent reinforcement learning as an automated discovery tool of turbulence models. We demonstrate the potential of this approach on large-eddy simulations of isotropic turbulence, using the recovery of statistical properties of direct numerical simulations as a reward. The closure model is a control policy enacted by cooperating agents, which detect critical spatio-temporal patterns in the flow field to estimate the unresolved subgrid-scale physics. Results obtained with multi-agent reinforcement learning algorithms based on experience replay compare favourably with established modelling approaches. Moreover, we show that the learned turbulence models generalize across grid sizes and flow conditions.
Turbulence modelling is an essential flow simulation tool, but is typically dependent on physical insight and engineering intuition. Novati et al. develop a multi-agent reinforcement learning approach for learning turbulence models that can generalize across grid sizes and flow conditions. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-020-00272-0 |