Trusting artificial intelligence in cybersecurity is a double-edged sword
Applications of artificial intelligence (AI) for cybersecurity tasks are attracting greater attention from the private and the public sectors. Estimates indicate that the market for AI in cybersecurity will grow from US$1 billion in 2016 to a US$34.8 billion net worth by 2025. The latest national cy...
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2019-12, Vol.1 (12), p.557-560 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Applications of artificial intelligence (AI) for cybersecurity tasks are attracting greater attention from the private and the public sectors. Estimates indicate that the market for AI in cybersecurity will grow from US$1 billion in 2016 to a US$34.8 billion net worth by 2025. The latest national cybersecurity and defence strategies of several governments explicitly mention AI capabilities. At the same time, initiatives to define new standards and certification procedures to elicit users’ trust in AI are emerging on a global scale. However, trust in AI (both machine learning and neural networks) to deliver cybersecurity tasks is a double-edged sword: it can improve substantially cybersecurity practices, but can also facilitate new forms of attacks to the AI applications themselves, which may pose severe security threats. We argue that trust in AI for cybersecurity is unwarranted and that, to reduce security risks, some form of control to ensure the deployment of ‘reliable AI’ for cybersecurity is necessary. To this end, we offer three recommendations focusing on the design, development and deployment of AI for cybersecurity.
Current national cybersecurity and defence strategies of several governments mention explicitly the use of AI. However, it will be important to develop standards and certification procedures, which involves continuous monitoring and assessment of threats. The focus should be on the reliability of AI-based systems, rather than on eliciting users’ trust in AI. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-019-0109-1 |