When causal inference meets deep learning
Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.
Gespeichert in:
Veröffentlicht in: | Nature machine intelligence 2020-08, Vol.2 (8), p.426-427 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques. |
---|---|
ISSN: | 2522-5839 2522-5839 |
DOI: | 10.1038/s42256-020-0218-x |