When causal inference meets deep learning

Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature machine intelligence 2020-08, Vol.2 (8), p.426-427
Hauptverfasser: Luo, Yunan, Peng, Jian, Ma, Jianzhu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Bayesian networks can capture causal relations, but learning such a network from data is NP-hard. Recent work has made it possible to approximate this problem as a continuous optimization task that can be solved efficiently with well-established numerical techniques.
ISSN:2522-5839
2522-5839
DOI:10.1038/s42256-020-0218-x