A measurement study of offloading virtual network functions to the edge
The deployment of virtual network functions (VNFs) at edge servers potentially impairs the performance of latency-sensitive applications due to their computational cost. This work considers a new approach to addressing this problem that provides line rate acceleration of VNFs by employing field-prog...
Gespeichert in:
Veröffentlicht in: | The Journal of supercomputing 2022-02, Vol.78 (2), p.1565-1582 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The deployment of virtual network functions (VNFs) at edge servers potentially impairs the performance of latency-sensitive applications due to their computational cost. This work considers a new approach to addressing this problem that provides line rate acceleration of VNFs by employing field-programmable gate array (FPGA) equipped edge servers. This approach has been validated by practical use cases with both TCP and UDP as underlying protocol on a physical testbed environment. We examine the performance implications of executing a security VNF at an FPGA-equipped edge server. We experimentally demonstrate reduced VNF execution latency and energy consumption for a real-time video streaming application in comparison with a software-only baseline. In particular, the results show that the approach lowers VNF execution latency and power consumption at the edge by up to 44% and 76%, respectively, in our experiments while satisfying time constraints and maintaining confidentiality with high scalability. We also highlight the potential research challenges to make this approach viable in practice. |
---|---|
ISSN: | 0920-8542 1573-0484 |
DOI: | 10.1007/s11227-021-03907-0 |