Semisimple decompositions of Lie algebras and prehomogeneous modules
We study {\em disemisimple} Lie algebras, i.e., Lie algebras which can be written as a vector space sum of two semisimple subalgebras. We show that a Lie algebra \(\mathfrak{g}\) is disemisimple if and only if its solvable radical coincides with its nilradical and is a prehomogeneous \(\mathfrak{s}\...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study {\em disemisimple} Lie algebras, i.e., Lie algebras which can be written as a vector space sum of two semisimple subalgebras. We show that a Lie algebra \(\mathfrak{g}\) is disemisimple if and only if its solvable radical coincides with its nilradical and is a prehomogeneous \(\mathfrak{s}\)-module for a Levi subalgebra \(\mathfrak{s}\) of \(\mathfrak{g}\). We use the classification of prehomogeneous \(\mathfrak{s}\)-modules for simple Lie algebras \(\mathfrak{s}\) given by Vinberg to show that the solvable radical of a disemisimple Lie algebra with simple Levi subalgebra is abelian. We extend this result to disemisimple Lie algebras having no simple quotients of type \(A\). |
---|---|
ISSN: | 2331-8422 |