Grid-to-rod fretting wear study of SiC/SiC composite accident-tolerant fuel claddings using an autoclave fretting bench test

Grid-to-rod-fretting (GTRF) in pressurized water reactors (PWRs) is known to cause wear and surface damage on the fuel claddings, potentially leading to radioactive leakage. One of the accident-tolerant fuel (ATF) concepts is to use advanced cladding materials that could withstand higher temperature...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Wear 2022-01, Vol.488-489, p.204172, Article 204172
Hauptverfasser: Kumara, Chanaka, Wang, Rick, Lu, Roger Y., Deck, Christian, Gazza, Jack, Qu, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Grid-to-rod-fretting (GTRF) in pressurized water reactors (PWRs) is known to cause wear and surface damage on the fuel claddings, potentially leading to radioactive leakage. One of the accident-tolerant fuel (ATF) concepts is to use advanced cladding materials that could withstand higher temperatures. This study investigated the wear behavior of candidate silicon carbide (SiC)-based composite claddings with different levels of surface finish in fretting against a commercial ZIRLO alloy grid using a unique bench-scale autoclave GTRF rig. The experiments mimicked the environment in an industrial full-assembly PWR simulator. Fretting tests were conducted with a realistic load (∼0.5 N) in deionized water under a pressure of 20–23 bar at 204 °C for 100 h. While the SiC/SiC composite claddings showed significantly higher wear resistance than the commercial ZIRLO alloy cladding as expected, the smoother versions experienced surprisingly higher wear than the much softer counterface, ZIRLO grid. The wear mechanism of the SiC/SiC cladding was attributed to the SiC wear debris that was trapped at the fretting interface causing both 3-body and 2-body (embedded into the grid surface) abrasion of the cladding. Rougher SiC/SiC claddings had less material loss but caused more wear on the ZIRLO grid. Pre-oxidized ZIRLO grid showed better compatibility with the SiC/SiC cladding to protect both the cladding and grid as a result of reduced wear debris trapping. •SiC/SiC composite is a candidate accident-tolerant fuel (ATF) cladding material for PWRs.•Fretting wear behavior of SiC/SiC claddings was investigated in a reactor-relevant environment.•SiC/SiC claddings showed significantly higher wear resistance than the commercial ZIRLO cladding.•Wear of SiC/SiC cladding was caused by the SiC wear debris trapped at the fretting interface.
ISSN:0043-1648
1873-2577
DOI:10.1016/j.wear.2021.204172