High-accuracy thrust measurements of the EMDrive and elimination of false-positive effects

The EMDrive is a proposed propellantless propulsion concept claiming to be many orders of magnitude more efficient than classical radiation pressure forces. It is based on microwaves, which are injected into a closed tapered cavity, producing a unidirectional thrust with values of at least 1 mN/kW....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:CEAS space journal 2022, Vol.14 (1), p.31-44
Hauptverfasser: Tajmar, M., Neunzig, O., Weikert, M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The EMDrive is a proposed propellantless propulsion concept claiming to be many orders of magnitude more efficient than classical radiation pressure forces. It is based on microwaves, which are injected into a closed tapered cavity, producing a unidirectional thrust with values of at least 1 mN/kW. This was met with high scepticism going against basic conservation laws and classical mechanics. However, several tests and theories appeared in the literature supporting this concept. Measuring a thruster with a significant thermal and mechanical load as well as high electric currents, such as those required to operate a microwave amplifier, can create numerous artefacts that produce false-positive thrust values. After many iterations, we developed an inverted counterbalanced double pendulum thrust balance, where the thruster can be mounted on a bearing below its suspension point to eliminate most thermal drift effects. In addition, the EMDrive was self-powered by a battery-pack to remove undesired interactions due to feedthroughs. We found no thrust values within a wide frequency band including several resonance frequencies and different modes. Our data limit any anomalous thrust to below the force equivalent from classical radiation for a given amount of power. This provides strong limits to all proposed theories and rules out previous test results by at least two orders of magnitude.
ISSN:1868-2502
1868-2510
DOI:10.1007/s12567-021-00385-1