Semigroups of transformations whose restrictions belong to a given semigroup
For a set X , denote by T ( X ) the semigroup of full transformations on X . For any subset Y of X and any subsemigroup S ( Y ) of T ( Y ), denote by T S ( Y ) ( X ) the semigroup of all transformations α ∈ T ( X ) such that α | Y ∈ S ( Y ) , where α | Y is the restriction of α to Y . In this pape...
Gespeichert in:
Veröffentlicht in: | Semigroup forum 2022-02, Vol.104 (1), p.109-124 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a set
X
, denote by
T
(
X
) the semigroup of full transformations on
X
. For any subset
Y
of
X
and any subsemigroup
S
(
Y
)
of
T
(
Y
), denote by
T
S
(
Y
)
(
X
)
the semigroup of all transformations
α
∈
T
(
X
)
such that
α
|
Y
∈
S
(
Y
)
, where
α
|
Y
is the restriction of
α
to
Y
. In this paper, we describe the regular elements of
T
S
(
Y
)
(
X
)
and determine when
T
S
(
Y
)
(
X
)
is a regular semigroup [inverse semigroup, completely regular semigroup]. With the assumption that
S
(
Y
)
contains the identity
id
Y
, we describe Green’s relations in
T
S
(
Y
)
(
X
)
in terms of the corresponding Green’s relations in
S
(
Y
)
. We apply these general results to obtain more concrete results for the semigroup
T
Γ
(
Y
)
(
X
)
, where
Γ
(
Y
)
is the semigroup of full injective transformations on
Y
. We also discuss generalizations and extensions of the semigroup
T
S
(
Y
)
(
X
)
. |
---|---|
ISSN: | 0037-1912 1432-2137 |
DOI: | 10.1007/s00233-021-10227-5 |