Semigroups of transformations whose restrictions belong to a given semigroup

For a set X , denote by T ( X ) the semigroup of full transformations on  X . For any subset Y of  X and any subsemigroup S ( Y ) of T ( Y ), denote by T S ( Y ) ( X ) the semigroup of all transformations α ∈ T ( X ) such that α | Y ∈ S ( Y ) , where α | Y is the restriction of α to Y . In this pape...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Semigroup forum 2022-02, Vol.104 (1), p.109-124
1. Verfasser: Konieczny, Janusz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For a set X , denote by T ( X ) the semigroup of full transformations on  X . For any subset Y of  X and any subsemigroup S ( Y ) of T ( Y ), denote by T S ( Y ) ( X ) the semigroup of all transformations α ∈ T ( X ) such that α | Y ∈ S ( Y ) , where α | Y is the restriction of α to Y . In this paper, we describe the regular elements of T S ( Y ) ( X ) and determine when T S ( Y ) ( X ) is a regular semigroup [inverse semigroup, completely regular semigroup]. With the assumption that S ( Y ) contains the identity id Y , we describe Green’s relations in T S ( Y ) ( X ) in terms of the corresponding Green’s relations in S ( Y ) . We apply these general results to obtain more concrete results for the semigroup T Γ ( Y ) ( X ) , where Γ ( Y ) is the semigroup of full injective transformations on Y . We also discuss generalizations and extensions of the semigroup T S ( Y ) ( X ) .
ISSN:0037-1912
1432-2137
DOI:10.1007/s00233-021-10227-5