Application and analysis of multi-stage flash vaporization process in steam production in high-temperature heat pump system with large temperature difference

The high-temperature heat pump steam system (HTHPS) is an effective way to replace the calcining boiler's steam. However, the large temperature span of the system leads to colossal exergy loss of refrigerant in expansion valves and other components. Therefore, it is hoped to adopt the dual-flas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of refrigeration 2022-01, Vol.133, p.123-132
Hauptverfasser: Yanting, ZHANG, Hao, ZHANG, Lin, WANG, Jingyu, XU, Lumeng, HUANG, Jingkai, CHEN, Zheng, HUANG
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The high-temperature heat pump steam system (HTHPS) is an effective way to replace the calcining boiler's steam. However, the large temperature span of the system leads to colossal exergy loss of refrigerant in expansion valves and other components. Therefore, it is hoped to adopt the dual-flash vaporization process to improve the system's steam production performance. In this paper, three thermodynamic models and exergy models of HTHPS with a double flash evaporation process are established. Furthermore, this paper uses the multivariate simulated annealing algorithm to calculate the optimal COP of the system. Then, by comparing the single-stage compression (SC) system and the quasi-two-stage compression (QTC) system, the influence of the dual-flash vaporization process on HTHPS is analyzed. The results show that under the same environment, the COP of the dual-flash vaporization process compression system is 23.8% 44.54% higher than that of the SC system. With the increase of the system temperature span, the flash steam supplemental process brings the system to improved thermodynamic performance. Moreover, the exergy model of the dual-flash system is closest to the reversed Carnot cycle, when the evaporation temperature is 50 °C and the condensing temperature is 110 °C.
ISSN:0140-7007
1879-2081
DOI:10.1016/j.ijrefrig.2021.09.035