On the number of constituents of products of characters
It has been conjectured that if the number of distinct irreducible constituents of the product of two faithful irreducible characters of a finite \(p\)-group, for \(p\geq5\), is bigger than \((p+1)/2\), then it is at least \(p\). We give a counterexample to this conjecture.
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | It has been conjectured that if the number of distinct irreducible constituents of the product of two faithful irreducible characters of a finite \(p\)-group, for \(p\geq5\), is bigger than \((p+1)/2\), then it is at least \(p\). We give a counterexample to this conjecture. |
---|---|
ISSN: | 2331-8422 |