On the number of constituents of products of characters

It has been conjectured that if the number of distinct irreducible constituents of the product of two faithful irreducible characters of a finite \(p\)-group, for \(p\geq5\), is bigger than \((p+1)/2\), then it is at least \(p\). We give a counterexample to this conjecture.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-01
Hauptverfasser: Loukaki, M, Moretó, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:It has been conjectured that if the number of distinct irreducible constituents of the product of two faithful irreducible characters of a finite \(p\)-group, for \(p\geq5\), is bigger than \((p+1)/2\), then it is at least \(p\). We give a counterexample to this conjecture.
ISSN:2331-8422