Oxygen ionic transport in LaInO3 and LaIn0.5Zn0.5O2.75 perovskites: Theory and experiment
The new oxygen-deficient orthorhombic perovskite LaIn0.5Zn0.5O2.75 was obtained by solid-state synthesis. Ionic transport properties were studied by a combined theoretical approach consisting of geometrical-topological analysis, bond valence site energy modeling and density functional theory (DFT) c...
Gespeichert in:
Veröffentlicht in: | Solid state ionics 2021-12, Vol.372, p.115790, Article 115790 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The new oxygen-deficient orthorhombic perovskite LaIn0.5Zn0.5O2.75 was obtained by solid-state synthesis. Ionic transport properties were studied by a combined theoretical approach consisting of geometrical-topological analysis, bond valence site energy modeling and density functional theory (DFT) calculations. The DFT calculations showed that oxygen migration energy is by 0.2 eV lower for zinc-containing perovskite compared to pure LaInO3. The conductivity was measured in the temperature range of 400–1000 °C and at various oxygen partial pressures 10−18–2·10−1 atm. LaIn0.5Zn0.5O2.75 was found to be pure oxide-ion conductor (σ ≈ 10−5 S/cm) at T |
---|---|
ISSN: | 0167-2738 1872-7689 |
DOI: | 10.1016/j.ssi.2021.115790 |