RUL Prediction of Switched Mode Power Supply Using a Kalman Filter Assisted Deep Neural Network
Switched-mode power supply (SMPS) has been of vital importance majorly in power management of industrial equipment with much-improved efficiency and reliability. Given the diverse range on loading and operating conditions of SMPS, several anomalies can occur in the device resulting to over-voltage,...
Gespeichert in:
Veröffentlicht in: | Processes 2022-01, Vol.10 (1), p.55 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Switched-mode power supply (SMPS) has been of vital importance majorly in power management of industrial equipment with much-improved efficiency and reliability. Given the diverse range on loading and operating conditions of SMPS, several anomalies can occur in the device resulting to over-voltage, overloading, erratic atmospheric conditions, etc. Electrical over-stress (EOS) is one of the commonly used causes of failure among power electronic devices. Since there is a limitation for the SMPS in terms of input voltage and current (two methods of controlling an SMPS), the device has been subjected to an accelerated aging test using EOS. This study presents a two-fold approach to evaluate the overall state of health of SMPS using an integration of extended Kalman filter (EKF) and deep neural network. Firstly, the EKF algorithm would assist in fusing fault features to acquire an comprehensive degradation trend. Secondly, the degradation pattern of the SMPS has been monitored for four different electrical loadings, and a bi-directional long short-term memory (BiLSTM) deep neural network is trained for future predictions. The proposed model provides a unique approach and accuracy in SMPS fault indication with the aid of electrical parameters. |
---|---|
ISSN: | 2227-9717 2227-9717 |
DOI: | 10.3390/pr10010055 |