Electroless Ni–P Plating on Mullite Powders and Study of the Mechanical Properties of Its Plasma-Sprayed Coating

To effectively improve the properties of a mullite coating and its interfacial bonding with the substrate, a Ni–P layer is deposited on the surface of mullite powders by electroless plating. The original mullite powders and coated mullite powders are then deposited onto stainless-steel substrates by...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Coatings (Basel) 2022-01, Vol.12 (1), p.18
Hauptverfasser: Chen, Kaiwang, Zhang, Penglin, Sun, Pengfei, Niu, Xianming, Hu, Chunlian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To effectively improve the properties of a mullite coating and its interfacial bonding with the substrate, a Ni–P layer is deposited on the surface of mullite powders by electroless plating. The original mullite powders and coated mullite powders are then deposited onto stainless-steel substrates by plasma spraying. The growth mechanism of the Ni–P layer during the plating, the microstructures of the coated powders and mullite coating and the properties of the mullite coatings are characterized and analyzed. The results indicate that the Ni–P layer on the surface of the mullite powder has cell structures with a dense uniform distribution and grows in layers on the surface of the mullite powder. The crystallization behavior of Ni-P amorphous layer is induced by heat treatment. Compared to the original mullite coating, the coating prepared by the coated mullite powders has better manufacturability, stronger adhesion to the substrate, lower porosity (7.40%, 65% of that of the original coating), higher hardness (500.1 HV, 1.2 times that of the original coating), and better thermal cycle resistance (two times that of the original coating). The method of preparation of high-temperature thermal barrier coatings with coated mullite powders has a high application value.
ISSN:2079-6412
2079-6412
DOI:10.3390/coatings12010018