Use of Optical Emission Spectroscopy Data for Fault Detection of Mass Flow Controller in Plasma Etch Equipment

To minimize wafer yield losses by misprocessing during semiconductor manufacturing, faster and more accurate fault detection during the plasma process are desired to increase production yields. Process faults can be caused by abnormal equipment conditions, and the performance drifts of the parts or...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-01, Vol.11 (2), p.253
Hauptverfasser: Kwon, Hyukjoon, Hong, Sang Jeen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:To minimize wafer yield losses by misprocessing during semiconductor manufacturing, faster and more accurate fault detection during the plasma process are desired to increase production yields. Process faults can be caused by abnormal equipment conditions, and the performance drifts of the parts or components of complicated semiconductor fabrication equipment are some of the most unnoticed factors that eventually change the plasma conditions. In this work, we propose improved stability and accuracy of process fault detection using optical emission spectroscopy (OES) data. Under a controlled experimental setup of arbitrarily induced fault scenarios, the extended isolation forest (EIF) approach was used to detect anomalies in OES data compared with the conventional isolation forest method in terms of accuracy and speed. We also used the OES data to generate features related to electron temperature and found that using the electron temperature features together with equipment status variable identification data (SVID) and OES data improved the prediction accuracy of process/equipment fault detection by a maximum of 0.84%.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11020253