Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study

Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-01, Vol.11 (2), p.267
Hauptverfasser: Morales, Félix, García-Torres, Miguel, Velázquez, Gustavo, Daumas-Ladouce, Federico, Gardel-Sotomayor, Pedro E., Gómez-Vela, Francisco, Divina, Federico, Vázquez Noguera, José Luis, Sauer Ayala, Carlos, Pinto-Roa, Diego P., Mello-Román, Julio César, Becerra-Alonso, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 2
container_start_page 267
container_title Electronics (Basel)
container_volume 11
creator Morales, Félix
García-Torres, Miguel
Velázquez, Gustavo
Daumas-Ladouce, Federico
Gardel-Sotomayor, Pedro E.
Gómez-Vela, Francisco
Divina, Federico
Vázquez Noguera, José Luis
Sauer Ayala, Carlos
Pinto-Roa, Diego P.
Mello-Román, Julio César
Becerra-Alonso, David
description Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.
doi_str_mv 10.3390/electronics11020267
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621277886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621277886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS58DGTu2YWxSVh1REJeg5chy7uKR2sJND_p6UcuDAXnY1mh3NDELXKdxSKuBOt1r1wTurYpoCAcL4GZoR4CIRRJDzP_clWsS4h2lESnMKM_RZONmO0UbsDV79KFmFV06H3YhL7-Jw6HrrHd4Eb2yrI95G63ZY4hepPqzTeK1lcEeo6LrgJ_AeF3gjg9wNcpQOlzJq_NYPzXiFLoxso1787jnaPqzey6dk_fr4XBbrRFFC-oRneZ7VDRhGG95kAjRhGWQ5p2bZyFooqVgmWE2XYIhQFJjmzAgCKUw_oqZzdHPSnfx8DTr21d4PYcoZK8JISjjPczax6Imlgo8xaFN1wR5kGKsUqmOx1T_F0m8WM25N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621277886</pqid></control><display><type>article</type><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</creator><creatorcontrib>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</creatorcontrib><description>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11020267</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Case studies ; Clustering ; Data processing ; Datasets ; Electricity ; Energy consumption ; Feature extraction ; Feeders ; Genetic algorithms ; Machine learning ; Neural networks ; Support vector machines ; Time series ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2022-01, Vol.11 (2), p.267</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</citedby><cites>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</cites><orcidid>0000-0001-5174-7743 ; 0000-0003-3161-8383 ; 0000-0003-2479-9876 ; 0000-0001-8891-7208 ; 0000-0002-0964-9506 ; 0000-0002-6867-7080 ; 0000-0001-9850-9937 ; 0000-0001-6578-2769 ; 0000-0001-7376-5790 ; 0000-0002-3698-4043 ; 0000-0001-5441-5736 ; 0000-0002-9766-4182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Morales, Félix</creatorcontrib><creatorcontrib>García-Torres, Miguel</creatorcontrib><creatorcontrib>Velázquez, Gustavo</creatorcontrib><creatorcontrib>Daumas-Ladouce, Federico</creatorcontrib><creatorcontrib>Gardel-Sotomayor, Pedro E.</creatorcontrib><creatorcontrib>Gómez-Vela, Francisco</creatorcontrib><creatorcontrib>Divina, Federico</creatorcontrib><creatorcontrib>Vázquez Noguera, José Luis</creatorcontrib><creatorcontrib>Sauer Ayala, Carlos</creatorcontrib><creatorcontrib>Pinto-Roa, Diego P.</creatorcontrib><creatorcontrib>Mello-Román, Julio César</creatorcontrib><creatorcontrib>Becerra-Alonso, David</creatorcontrib><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><title>Electronics (Basel)</title><description>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Case studies</subject><subject>Clustering</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Feeders</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS58DGTu2YWxSVh1REJeg5chy7uKR2sJND_p6UcuDAXnY1mh3NDELXKdxSKuBOt1r1wTurYpoCAcL4GZoR4CIRRJDzP_clWsS4h2lESnMKM_RZONmO0UbsDV79KFmFV06H3YhL7-Jw6HrrHd4Eb2yrI95G63ZY4hepPqzTeK1lcEeo6LrgJ_AeF3gjg9wNcpQOlzJq_NYPzXiFLoxso1787jnaPqzey6dk_fr4XBbrRFFC-oRneZ7VDRhGG95kAjRhGWQ5p2bZyFooqVgmWE2XYIhQFJjmzAgCKUw_oqZzdHPSnfx8DTr21d4PYcoZK8JISjjPczax6Imlgo8xaFN1wR5kGKsUqmOx1T_F0m8WM25N</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Morales, Félix</creator><creator>García-Torres, Miguel</creator><creator>Velázquez, Gustavo</creator><creator>Daumas-Ladouce, Federico</creator><creator>Gardel-Sotomayor, Pedro E.</creator><creator>Gómez-Vela, Francisco</creator><creator>Divina, Federico</creator><creator>Vázquez Noguera, José Luis</creator><creator>Sauer Ayala, Carlos</creator><creator>Pinto-Roa, Diego P.</creator><creator>Mello-Román, Julio César</creator><creator>Becerra-Alonso, David</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5174-7743</orcidid><orcidid>https://orcid.org/0000-0003-3161-8383</orcidid><orcidid>https://orcid.org/0000-0003-2479-9876</orcidid><orcidid>https://orcid.org/0000-0001-8891-7208</orcidid><orcidid>https://orcid.org/0000-0002-0964-9506</orcidid><orcidid>https://orcid.org/0000-0002-6867-7080</orcidid><orcidid>https://orcid.org/0000-0001-9850-9937</orcidid><orcidid>https://orcid.org/0000-0001-6578-2769</orcidid><orcidid>https://orcid.org/0000-0001-7376-5790</orcidid><orcidid>https://orcid.org/0000-0002-3698-4043</orcidid><orcidid>https://orcid.org/0000-0001-5441-5736</orcidid><orcidid>https://orcid.org/0000-0002-9766-4182</orcidid></search><sort><creationdate>20220101</creationdate><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><author>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Case studies</topic><topic>Clustering</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Feeders</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Félix</creatorcontrib><creatorcontrib>García-Torres, Miguel</creatorcontrib><creatorcontrib>Velázquez, Gustavo</creatorcontrib><creatorcontrib>Daumas-Ladouce, Federico</creatorcontrib><creatorcontrib>Gardel-Sotomayor, Pedro E.</creatorcontrib><creatorcontrib>Gómez-Vela, Francisco</creatorcontrib><creatorcontrib>Divina, Federico</creatorcontrib><creatorcontrib>Vázquez Noguera, José Luis</creatorcontrib><creatorcontrib>Sauer Ayala, Carlos</creatorcontrib><creatorcontrib>Pinto-Roa, Diego P.</creatorcontrib><creatorcontrib>Mello-Román, Julio César</creatorcontrib><creatorcontrib>Becerra-Alonso, David</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Félix</au><au>García-Torres, Miguel</au><au>Velázquez, Gustavo</au><au>Daumas-Ladouce, Federico</au><au>Gardel-Sotomayor, Pedro E.</au><au>Gómez-Vela, Francisco</au><au>Divina, Federico</au><au>Vázquez Noguera, José Luis</au><au>Sauer Ayala, Carlos</au><au>Pinto-Roa, Diego P.</au><au>Mello-Román, Julio César</au><au>Becerra-Alonso, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>11</volume><issue>2</issue><spage>267</spage><pages>267-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11020267</doi><orcidid>https://orcid.org/0000-0001-5174-7743</orcidid><orcidid>https://orcid.org/0000-0003-3161-8383</orcidid><orcidid>https://orcid.org/0000-0003-2479-9876</orcidid><orcidid>https://orcid.org/0000-0001-8891-7208</orcidid><orcidid>https://orcid.org/0000-0002-0964-9506</orcidid><orcidid>https://orcid.org/0000-0002-6867-7080</orcidid><orcidid>https://orcid.org/0000-0001-9850-9937</orcidid><orcidid>https://orcid.org/0000-0001-6578-2769</orcidid><orcidid>https://orcid.org/0000-0001-7376-5790</orcidid><orcidid>https://orcid.org/0000-0002-3698-4043</orcidid><orcidid>https://orcid.org/0000-0001-5441-5736</orcidid><orcidid>https://orcid.org/0000-0002-9766-4182</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-9292
ispartof Electronics (Basel), 2022-01, Vol.11 (2), p.267
issn 2079-9292
2079-9292
language eng
recordid cdi_proquest_journals_2621277886
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute
subjects Algorithms
Artificial intelligence
Case studies
Clustering
Data processing
Datasets
Electricity
Energy consumption
Feature extraction
Feeders
Genetic algorithms
Machine learning
Neural networks
Support vector machines
Time series
Wavelet transforms
title Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Electric%20Energy%20Consumption%20Profiles%20Using%20a%20Machine%20Learning%20Approach:%20A%20Paraguayan%20Case%20Study&rft.jtitle=Electronics%20(Basel)&rft.au=Morales,%20F%C3%A9lix&rft.date=2022-01-01&rft.volume=11&rft.issue=2&rft.spage=267&rft.pages=267-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11020267&rft_dat=%3Cproquest_cross%3E2621277886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621277886&rft_id=info:pmid/&rfr_iscdi=true