Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study
Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-pr...
Gespeichert in:
Veröffentlicht in: | Electronics (Basel) 2022-01, Vol.11 (2), p.267 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 2 |
container_start_page | 267 |
container_title | Electronics (Basel) |
container_volume | 11 |
creator | Morales, Félix García-Torres, Miguel Velázquez, Gustavo Daumas-Ladouce, Federico Gardel-Sotomayor, Pedro E. Gómez-Vela, Francisco Divina, Federico Vázquez Noguera, José Luis Sauer Ayala, Carlos Pinto-Roa, Diego P. Mello-Román, Julio César Becerra-Alonso, David |
description | Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters. |
doi_str_mv | 10.3390/electronics11020267 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2621277886</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2621277886</sourcerecordid><originalsourceid>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</originalsourceid><addsrcrecordid>eNptUMtOwzAQtBBIVKVfwMUS58DGTu2YWxSVh1REJeg5chy7uKR2sJND_p6UcuDAXnY1mh3NDELXKdxSKuBOt1r1wTurYpoCAcL4GZoR4CIRRJDzP_clWsS4h2lESnMKM_RZONmO0UbsDV79KFmFV06H3YhL7-Jw6HrrHd4Eb2yrI95G63ZY4hepPqzTeK1lcEeo6LrgJ_AeF3gjg9wNcpQOlzJq_NYPzXiFLoxso1787jnaPqzey6dk_fr4XBbrRFFC-oRneZ7VDRhGG95kAjRhGWQ5p2bZyFooqVgmWE2XYIhQFJjmzAgCKUw_oqZzdHPSnfx8DTr21d4PYcoZK8JISjjPczax6Imlgo8xaFN1wR5kGKsUqmOx1T_F0m8WM25N</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2621277886</pqid></control><display><type>article</type><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><creator>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</creator><creatorcontrib>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</creatorcontrib><description>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</description><identifier>ISSN: 2079-9292</identifier><identifier>EISSN: 2079-9292</identifier><identifier>DOI: 10.3390/electronics11020267</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Case studies ; Clustering ; Data processing ; Datasets ; Electricity ; Energy consumption ; Feature extraction ; Feeders ; Genetic algorithms ; Machine learning ; Neural networks ; Support vector machines ; Time series ; Wavelet transforms</subject><ispartof>Electronics (Basel), 2022-01, Vol.11 (2), p.267</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</citedby><cites>FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</cites><orcidid>0000-0001-5174-7743 ; 0000-0003-3161-8383 ; 0000-0003-2479-9876 ; 0000-0001-8891-7208 ; 0000-0002-0964-9506 ; 0000-0002-6867-7080 ; 0000-0001-9850-9937 ; 0000-0001-6578-2769 ; 0000-0001-7376-5790 ; 0000-0002-3698-4043 ; 0000-0001-5441-5736 ; 0000-0002-9766-4182</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Morales, Félix</creatorcontrib><creatorcontrib>García-Torres, Miguel</creatorcontrib><creatorcontrib>Velázquez, Gustavo</creatorcontrib><creatorcontrib>Daumas-Ladouce, Federico</creatorcontrib><creatorcontrib>Gardel-Sotomayor, Pedro E.</creatorcontrib><creatorcontrib>Gómez-Vela, Francisco</creatorcontrib><creatorcontrib>Divina, Federico</creatorcontrib><creatorcontrib>Vázquez Noguera, José Luis</creatorcontrib><creatorcontrib>Sauer Ayala, Carlos</creatorcontrib><creatorcontrib>Pinto-Roa, Diego P.</creatorcontrib><creatorcontrib>Mello-Román, Julio César</creatorcontrib><creatorcontrib>Becerra-Alonso, David</creatorcontrib><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><title>Electronics (Basel)</title><description>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Case studies</subject><subject>Clustering</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Electricity</subject><subject>Energy consumption</subject><subject>Feature extraction</subject><subject>Feeders</subject><subject>Genetic algorithms</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Support vector machines</subject><subject>Time series</subject><subject>Wavelet transforms</subject><issn>2079-9292</issn><issn>2079-9292</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNptUMtOwzAQtBBIVKVfwMUS58DGTu2YWxSVh1REJeg5chy7uKR2sJND_p6UcuDAXnY1mh3NDELXKdxSKuBOt1r1wTurYpoCAcL4GZoR4CIRRJDzP_clWsS4h2lESnMKM_RZONmO0UbsDV79KFmFV06H3YhL7-Jw6HrrHd4Eb2yrI95G63ZY4hepPqzTeK1lcEeo6LrgJ_AeF3gjg9wNcpQOlzJq_NYPzXiFLoxso1787jnaPqzey6dk_fr4XBbrRFFC-oRneZ7VDRhGG95kAjRhGWQ5p2bZyFooqVgmWE2XYIhQFJjmzAgCKUw_oqZzdHPSnfx8DTr21d4PYcoZK8JISjjPczax6Imlgo8xaFN1wR5kGKsUqmOx1T_F0m8WM25N</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Morales, Félix</creator><creator>García-Torres, Miguel</creator><creator>Velázquez, Gustavo</creator><creator>Daumas-Ladouce, Federico</creator><creator>Gardel-Sotomayor, Pedro E.</creator><creator>Gómez-Vela, Francisco</creator><creator>Divina, Federico</creator><creator>Vázquez Noguera, José Luis</creator><creator>Sauer Ayala, Carlos</creator><creator>Pinto-Roa, Diego P.</creator><creator>Mello-Román, Julio César</creator><creator>Becerra-Alonso, David</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-5174-7743</orcidid><orcidid>https://orcid.org/0000-0003-3161-8383</orcidid><orcidid>https://orcid.org/0000-0003-2479-9876</orcidid><orcidid>https://orcid.org/0000-0001-8891-7208</orcidid><orcidid>https://orcid.org/0000-0002-0964-9506</orcidid><orcidid>https://orcid.org/0000-0002-6867-7080</orcidid><orcidid>https://orcid.org/0000-0001-9850-9937</orcidid><orcidid>https://orcid.org/0000-0001-6578-2769</orcidid><orcidid>https://orcid.org/0000-0001-7376-5790</orcidid><orcidid>https://orcid.org/0000-0002-3698-4043</orcidid><orcidid>https://orcid.org/0000-0001-5441-5736</orcidid><orcidid>https://orcid.org/0000-0002-9766-4182</orcidid></search><sort><creationdate>20220101</creationdate><title>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</title><author>Morales, Félix ; García-Torres, Miguel ; Velázquez, Gustavo ; Daumas-Ladouce, Federico ; Gardel-Sotomayor, Pedro E. ; Gómez-Vela, Francisco ; Divina, Federico ; Vázquez Noguera, José Luis ; Sauer Ayala, Carlos ; Pinto-Roa, Diego P. ; Mello-Román, Julio César ; Becerra-Alonso, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c322t-74884bd0f63d7d490e26404873f5dab9cac6496b350f29c306e76f920100f69b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Case studies</topic><topic>Clustering</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Electricity</topic><topic>Energy consumption</topic><topic>Feature extraction</topic><topic>Feeders</topic><topic>Genetic algorithms</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Support vector machines</topic><topic>Time series</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Morales, Félix</creatorcontrib><creatorcontrib>García-Torres, Miguel</creatorcontrib><creatorcontrib>Velázquez, Gustavo</creatorcontrib><creatorcontrib>Daumas-Ladouce, Federico</creatorcontrib><creatorcontrib>Gardel-Sotomayor, Pedro E.</creatorcontrib><creatorcontrib>Gómez-Vela, Francisco</creatorcontrib><creatorcontrib>Divina, Federico</creatorcontrib><creatorcontrib>Vázquez Noguera, José Luis</creatorcontrib><creatorcontrib>Sauer Ayala, Carlos</creatorcontrib><creatorcontrib>Pinto-Roa, Diego P.</creatorcontrib><creatorcontrib>Mello-Román, Julio César</creatorcontrib><creatorcontrib>Becerra-Alonso, David</creatorcontrib><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Electronics (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Morales, Félix</au><au>García-Torres, Miguel</au><au>Velázquez, Gustavo</au><au>Daumas-Ladouce, Federico</au><au>Gardel-Sotomayor, Pedro E.</au><au>Gómez-Vela, Francisco</au><au>Divina, Federico</au><au>Vázquez Noguera, José Luis</au><au>Sauer Ayala, Carlos</au><au>Pinto-Roa, Diego P.</au><au>Mello-Román, Julio César</au><au>Becerra-Alonso, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study</atitle><jtitle>Electronics (Basel)</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>11</volume><issue>2</issue><spage>267</spage><pages>267-</pages><issn>2079-9292</issn><eissn>2079-9292</eissn><abstract>Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/electronics11020267</doi><orcidid>https://orcid.org/0000-0001-5174-7743</orcidid><orcidid>https://orcid.org/0000-0003-3161-8383</orcidid><orcidid>https://orcid.org/0000-0003-2479-9876</orcidid><orcidid>https://orcid.org/0000-0001-8891-7208</orcidid><orcidid>https://orcid.org/0000-0002-0964-9506</orcidid><orcidid>https://orcid.org/0000-0002-6867-7080</orcidid><orcidid>https://orcid.org/0000-0001-9850-9937</orcidid><orcidid>https://orcid.org/0000-0001-6578-2769</orcidid><orcidid>https://orcid.org/0000-0001-7376-5790</orcidid><orcidid>https://orcid.org/0000-0002-3698-4043</orcidid><orcidid>https://orcid.org/0000-0001-5441-5736</orcidid><orcidid>https://orcid.org/0000-0002-9766-4182</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-9292 |
ispartof | Electronics (Basel), 2022-01, Vol.11 (2), p.267 |
issn | 2079-9292 2079-9292 |
language | eng |
recordid | cdi_proquest_journals_2621277886 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; MDPI - Multidisciplinary Digital Publishing Institute |
subjects | Algorithms Artificial intelligence Case studies Clustering Data processing Datasets Electricity Energy consumption Feature extraction Feeders Genetic algorithms Machine learning Neural networks Support vector machines Time series Wavelet transforms |
title | Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A28%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Electric%20Energy%20Consumption%20Profiles%20Using%20a%20Machine%20Learning%20Approach:%20A%20Paraguayan%20Case%20Study&rft.jtitle=Electronics%20(Basel)&rft.au=Morales,%20F%C3%A9lix&rft.date=2022-01-01&rft.volume=11&rft.issue=2&rft.spage=267&rft.pages=267-&rft.issn=2079-9292&rft.eissn=2079-9292&rft_id=info:doi/10.3390/electronics11020267&rft_dat=%3Cproquest_cross%3E2621277886%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2621277886&rft_id=info:pmid/&rfr_iscdi=true |