Analysis of Electric Energy Consumption Profiles Using a Machine Learning Approach: A Paraguayan Case Study

Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-01, Vol.11 (2), p.267
Hauptverfasser: Morales, Félix, García-Torres, Miguel, Velázquez, Gustavo, Daumas-Ladouce, Federico, Gardel-Sotomayor, Pedro E., Gómez-Vela, Francisco, Divina, Federico, Vázquez Noguera, José Luis, Sauer Ayala, Carlos, Pinto-Roa, Diego P., Mello-Román, Julio César, Becerra-Alonso, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Correctly defining and grouping electrical feeders is of great importance for electrical system operators. In this paper, we compare two different clustering techniques, K-means and hierarchical agglomerative clustering, applied to real data from the east region of Paraguay. The raw data were pre-processed, resulting in four data sets, namely, (i) a weekly feeder demand, (ii) a monthly feeder demand, (iii) a statistical feature set extracted from the original data and (iv) a seasonal and daily consumption feature set obtained considering the characteristics of the Paraguayan load curve. Considering the four data sets, two clustering algorithms, two distance metrics and five linkage criteria a total of 36 models with the Silhouette, Davies–Bouldin and Calinski–Harabasz index scores was assessed. The K-means algorithms with the seasonal feature data sets showed the best performance considering the Silhouette, Calinski–Harabasz and Davies–Bouldin validation index scores with a configuration of six clusters.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11020267