A novel human-robot interface based on soft skin sensor designed for the upper-limb exoskeleton

The upper-limb exoskeleton is capable of enhancing human arm strength beyond normal levels, whereas deriving the operator’s desired action straightforward turns out to be one of the significant difficulties facing human-robot interaction research. In the study, the human-robot interface was presente...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2022-01, Vol.236 (1), p.566-578
Hauptverfasser: Zhao, Zhirui, Li, Xing, Liu, Mingfang, Li, Xingchen, Gao, Haoze, Hao, Lina
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The upper-limb exoskeleton is capable of enhancing human arm strength beyond normal levels, whereas deriving the operator’s desired action straightforward turns out to be one of the significant difficulties facing human-robot interaction research. In the study, the human-robot interface was presented to regulate the exoskeleton tracking human elbow motion trajectory that employed the contact force signals between the exoskeleton and its operator as the primary means of information transportation. The signals were recorded by adopting the novel soft skin sensors attached to the bracket on the exoskeleton linkage, which could reflect the human arm motion intention through the virtual admittance model and adaptive control. Subsequently, a 1-DOF upper-limb exoskeleton was designed to illustrate the performance of the proposed sensor and the interaction control method in the human-robot cooperation experiment.
ISSN:0954-4062
2041-2983
DOI:10.1177/09544062211035801