Mond and Pe\(\check{c}\)ari\(\acute{c}\) inequality for \(h\)-convex functions with applications
In this paper, we prove an operator version of the Jensen's inequality and its converse for \(h\)-convex functions. We provide a refinement of the Jensen type inequality for \(h\)-convex functions. Moreover, we prove the Hermite-Hadamard's type inequality and a multiple operator version of...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-01 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove an operator version of the Jensen's inequality and its converse for \(h\)-convex functions. We provide a refinement of the Jensen type inequality for \(h\)-convex functions. Moreover, we prove the Hermite-Hadamard's type inequality and a multiple operator version of the Jensen's inequality for \(h\)-convex functions. In particular, a result for convex, \(P\)-class, \(s\)-convex, Godunova-Levin, and \(s\)-Godunova-Levin functions can be deduced. |
---|---|
ISSN: | 2331-8422 |