Almost Complex Structures on Homotopy Complex Projective Spaces
We show that all homotopy \(\mathbb{C}P^n\)s, smooth closed manifolds with the oriented homotopy type of \(\mathbb{C}P^n\), admit almost complex structures for \(3 \leq n \leq 6\), and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-02 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that all homotopy \(\mathbb{C}P^n\)s, smooth closed manifolds with the oriented homotopy type of \(\mathbb{C}P^n\), admit almost complex structures for \(3 \leq n \leq 6\), and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood on the classification of almost complex structures on homotopy \(\mathbb{C}P^4\)s. |
---|---|
ISSN: | 2331-8422 |