Almost Complex Structures on Homotopy Complex Projective Spaces

We show that all homotopy \(\mathbb{C}P^n\)s, smooth closed manifolds with the oriented homotopy type of \(\mathbb{C}P^n\), admit almost complex structures for \(3 \leq n \leq 6\), and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-02
1. Verfasser: Mills, Keith
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that all homotopy \(\mathbb{C}P^n\)s, smooth closed manifolds with the oriented homotopy type of \(\mathbb{C}P^n\), admit almost complex structures for \(3 \leq n \leq 6\), and classify these structures by their Chern classes. Our methods provide a new proof of a result of Libgober and Wood on the classification of almost complex structures on homotopy \(\mathbb{C}P^4\)s.
ISSN:2331-8422