Explainable Diabetic Retinopathy Detection and Retinal Image Generation

Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Koch's Postulates, the foundation in evidence-based medicine (EBM) to identify the pathogen, we propo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of biomedical and health informatics 2022-01, Vol.26 (1), p.44-55
Hauptverfasser: Niu, Yuhao, Gu, Lin, Zhao, Yitian, Lu, Feng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Though deep learning has shown successful performance in classifying the label and severity stage of certain diseases, most of them give few explanations on how to make predictions. Inspired by Koch's Postulates, the foundation in evidence-based medicine (EBM) to identify the pathogen, we propose to exploit the interpretability of deep learning application in medical diagnosis. By isolating neuron activation patterns from a diabetic retinopathy (DR) detector and visualizing them, we can determine the symptoms that the DR detector identifies as evidence to make prediction. To be specific, we first define novel pathological descriptors using activated neurons of the DR detector to encode both spatial and appearance information of lesions. Then, to visualize the symptom encoded in the descriptor, we propose Patho-GAN , a new network to synthesize medically plausible retinal images. By manipulating these descriptors, we could even arbitrarily control the position, quantity, and categories of generated lesions. We also show that our synthesized images carry the symptoms directly related to diabetic retinopathy diagnosis. Our generated images are both qualitatively and quantitatively superior to the ones by previous methods. Besides, compared to existing methods that take hours to generate an image, our second level speed endows the potential to be an effective solution for data augmentation.
ISSN:2168-2194
2168-2208
DOI:10.1109/JBHI.2021.3110593