Gamma-ray flash in the interaction of a tightly focused single-cycle ultra-intense laser pulse with a solid target
We employ the $\lambda ^{3}$ regime where a near-single-cycle laser pulse is tightly focused, thus providing the highest possible intensity for the minimal energy at a certain laser power. The quantum electrodynamics processes in the course of the interaction of an ultra-intense laser with a solid t...
Gespeichert in:
Veröffentlicht in: | Journal of plasma physics 2022-02, Vol.88 (1), Article 905880104 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We employ the $\lambda ^{3}$ regime where a near-single-cycle laser pulse is tightly focused, thus providing the highest possible intensity for the minimal energy at a certain laser power. The quantum electrodynamics processes in the course of the interaction of an ultra-intense laser with a solid target are studied via three-dimensional particle-in-cell simulations, revealing the generation of copious $\gamma$-photons and electron–positron pairs. A parametric study of the laser polarisation, target thickness and electron number density shows that a radially polarised laser provides the optimal regime for $\gamma$-photon generation. By varying the laser power in the range of 1 to 300 PW we find the scaling of the laser to $\gamma$-photon energy conversion efficiency. The laser-generated $\gamma$-photon interaction with a high-$Z$ target is further studied using Monte Carlo simulations revealing further electron–positron pair generation and radioactive nuclide creation. |
---|---|
ISSN: | 0022-3778 1469-7807 |
DOI: | 10.1017/S0022377821001318 |