Mimicking the microbial oxidation of elemental sulfur with a biphasic electrochemical cell

The lack of an artificial system that mimics elemental sulfur (S8) oxidation by microorganisms inhibits a deep mechanistic understanding of the sulfur cycle in the biosphere and the metabolism of sulfur-oxidising microorganisms. In this article, we present a biphasic system that mimics biochemical s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electrochimica acta 2022-01, Vol.401, p.139443, Article 139443
Hauptverfasser: Suárez-Herrera, Marco F., Gamero-Quijano, Alonso, Solla-Gullón, José, Scanlon, Micheál D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The lack of an artificial system that mimics elemental sulfur (S8) oxidation by microorganisms inhibits a deep mechanistic understanding of the sulfur cycle in the biosphere and the metabolism of sulfur-oxidising microorganisms. In this article, we present a biphasic system that mimics biochemical sulfur oxidation under ambient conditions using a liquid|liquid (L|L) electrochemical cell and gold nanoparticles (AuNPs) as an interfacial catalyst. The interface between two solvents of very different polarity is an ideal environment to oxidise S8, overcoming the incompatible solubilities of the hydrophobic reactants (O2 and S8) and hydrophilic products (H+, SO32–, SO42–, etc.). Furthermore, the interfacial AuNPs provide a catalytic surface onto which O2 and S8 can adsorb. Control over the driving force for the reaction is provided by polarising the L|L interface externally and tuning the Fermi level of the interfacial AuNPs by the adsorption of aqueous anions. Comparison of electrochemical measurements using a 4-electrode closed bipolar electrochemical cell and a L|L electrochemical cell confirmed that electron transfer reactions are possible between O2, gold and S8 in biphasic systems. The homogeneous oxidation of elemental sulfur at low temperatures is unlikely in a homogeneous phase as the reactants, intermediates and products have different solubility properties. A biphasic system overcomes these solubility limitations, while simultaneously providing an electrochemically controlled catalytic surface when the liquid|liquid interface is functionalised by a film of gold nanoparticles. [Display omitted]
ISSN:0013-4686
1873-3859
DOI:10.1016/j.electacta.2021.139443