Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology

Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022, Vol.57 (3), p.2292-2304
Hauptverfasser: Song, Pengwei, Zhang, Yuan, Luo, Yong, Liao, Xia, Tang, Wanyu, Yang, Jianming, Tian, Chenxu, Li, Guangxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2304
container_issue 3
container_start_page 2292
container_title Journal of materials science
container_volume 57
creator Song, Pengwei
Zhang, Yuan
Luo, Yong
Liao, Xia
Tang, Wanyu
Yang, Jianming
Tian, Chenxu
Li, Guangxian
description Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correlations between cellular structure and compression properties including surface hardness, compression deformation resistance, permanent compression set and compression resilience capacity were systematically investigated. Results showed that as the cell size increased, the hardness and maximum compressive stress of silicone rubber foams became lower, meanwhile, stress–strain curve exhibited prolonged plateau region. From the compression-resilience testing, it could be concluded that proper cell size increasement could improve deformation recovery capability of silicone rubber foams, simultaneously reduce permanent compression set and shorten recovery time. Besides, 50 cycles of loading–unloading compression tests were conducted to confirm proper cell size of silicone rubber foam employed in cyclic stress environment.
doi_str_mv 10.1007/s10853-021-06775-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2620837679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620837679</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-33a5f84288819f9baaf0fdeb735b236b5a98c88434a6e5742a22203768659cfd3</originalsourceid><addsrcrecordid>eNp9kE1LAzEYhIMoWKt_wFPA82o-NpvsUeonFHrRc8hmk23KdlOTrNKzf9y0K3jzMi8M88wLA8A1RrcYIX4XMRKMFojgAlWcs6I8ATPMOC1KgegpmCFESEHKCp-Dixg3CCHGCZ6B7wcTXTdAb2HvunX6MgeF0fVO-8HAMDaNCdB6tc0SoB9TTGpo3dDB1mRnq5LzAwxG-08TVJPBtIeNiqaF2Y_jzgQdXHJa9XCxIseqA52MXg--993-EpxZ1Udz9Xvn4P3p8W3xUixXz6-L-2WhKa5TQaliVpRECIFrWzdKWWRb03DKGkKrhqlaaCFKWqrKMF4SRQhBlFeiYrW2LZ2Dm6l3F_zHaGKSGz-GIb-UpCJI5Civc4pMKR18jMFYuQtuq8JeYiQPY8tpbJnHlsexZZkhOkExh4fOhL_qf6gf1SWEfw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620837679</pqid></control><display><type>article</type><title>Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology</title><source>SpringerLink</source><creator>Song, Pengwei ; Zhang, Yuan ; Luo, Yong ; Liao, Xia ; Tang, Wanyu ; Yang, Jianming ; Tian, Chenxu ; Li, Guangxian</creator><creatorcontrib>Song, Pengwei ; Zhang, Yuan ; Luo, Yong ; Liao, Xia ; Tang, Wanyu ; Yang, Jianming ; Tian, Chenxu ; Li, Guangxian</creatorcontrib><description>Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correlations between cellular structure and compression properties including surface hardness, compression deformation resistance, permanent compression set and compression resilience capacity were systematically investigated. Results showed that as the cell size increased, the hardness and maximum compressive stress of silicone rubber foams became lower, meanwhile, stress–strain curve exhibited prolonged plateau region. From the compression-resilience testing, it could be concluded that proper cell size increasement could improve deformation recovery capability of silicone rubber foams, simultaneously reduce permanent compression set and shorten recovery time. Besides, 50 cycles of loading–unloading compression tests were conducted to confirm proper cell size of silicone rubber foam employed in cyclic stress environment.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-021-06775-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Carbon dioxide ; Cellular structure ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Compression tests ; Compressive properties ; Crystallography and Scattering Methods ; Deformation resistance ; Foaming ; Foams ; Materials Science ; Polymer Sciences ; Polymers &amp; Biopolymers ; Recoverability ; Recovery time ; Resilience ; Rubber ; Silicone resins ; Silicone rubber ; Silicones ; Solid Mechanics ; Stress-strain curves ; Surface hardness ; Weight reduction</subject><ispartof>Journal of materials science, 2022, Vol.57 (3), p.2292-2304</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</rights><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-33a5f84288819f9baaf0fdeb735b236b5a98c88434a6e5742a22203768659cfd3</citedby><cites>FETCH-LOGICAL-c319t-33a5f84288819f9baaf0fdeb735b236b5a98c88434a6e5742a22203768659cfd3</cites><orcidid>0000-0002-4093-0507</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10853-021-06775-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10853-021-06775-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27926,27927,41490,42559,51321</link.rule.ids></links><search><creatorcontrib>Song, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Liao, Xia</creatorcontrib><creatorcontrib>Tang, Wanyu</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Tian, Chenxu</creatorcontrib><creatorcontrib>Li, Guangxian</creatorcontrib><title>Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correlations between cellular structure and compression properties including surface hardness, compression deformation resistance, permanent compression set and compression resilience capacity were systematically investigated. Results showed that as the cell size increased, the hardness and maximum compressive stress of silicone rubber foams became lower, meanwhile, stress–strain curve exhibited prolonged plateau region. From the compression-resilience testing, it could be concluded that proper cell size increasement could improve deformation recovery capability of silicone rubber foams, simultaneously reduce permanent compression set and shorten recovery time. Besides, 50 cycles of loading–unloading compression tests were conducted to confirm proper cell size of silicone rubber foam employed in cyclic stress environment.</description><subject>Carbon dioxide</subject><subject>Cellular structure</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Compression tests</subject><subject>Compressive properties</subject><subject>Crystallography and Scattering Methods</subject><subject>Deformation resistance</subject><subject>Foaming</subject><subject>Foams</subject><subject>Materials Science</subject><subject>Polymer Sciences</subject><subject>Polymers &amp; Biopolymers</subject><subject>Recoverability</subject><subject>Recovery time</subject><subject>Resilience</subject><subject>Rubber</subject><subject>Silicone resins</subject><subject>Silicone rubber</subject><subject>Silicones</subject><subject>Solid Mechanics</subject><subject>Stress-strain curves</subject><subject>Surface hardness</subject><subject>Weight reduction</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNp9kE1LAzEYhIMoWKt_wFPA82o-NpvsUeonFHrRc8hmk23KdlOTrNKzf9y0K3jzMi8M88wLA8A1RrcYIX4XMRKMFojgAlWcs6I8ATPMOC1KgegpmCFESEHKCp-Dixg3CCHGCZ6B7wcTXTdAb2HvunX6MgeF0fVO-8HAMDaNCdB6tc0SoB9TTGpo3dDB1mRnq5LzAwxG-08TVJPBtIeNiqaF2Y_jzgQdXHJa9XCxIseqA52MXg--993-EpxZ1Udz9Xvn4P3p8W3xUixXz6-L-2WhKa5TQaliVpRECIFrWzdKWWRb03DKGkKrhqlaaCFKWqrKMF4SRQhBlFeiYrW2LZ2Dm6l3F_zHaGKSGz-GIb-UpCJI5Civc4pMKR18jMFYuQtuq8JeYiQPY8tpbJnHlsexZZkhOkExh4fOhL_qf6gf1SWEfw</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Song, Pengwei</creator><creator>Zhang, Yuan</creator><creator>Luo, Yong</creator><creator>Liao, Xia</creator><creator>Tang, Wanyu</creator><creator>Yang, Jianming</creator><creator>Tian, Chenxu</creator><creator>Li, Guangxian</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-4093-0507</orcidid></search><sort><creationdate>2022</creationdate><title>Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology</title><author>Song, Pengwei ; Zhang, Yuan ; Luo, Yong ; Liao, Xia ; Tang, Wanyu ; Yang, Jianming ; Tian, Chenxu ; Li, Guangxian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-33a5f84288819f9baaf0fdeb735b236b5a98c88434a6e5742a22203768659cfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon dioxide</topic><topic>Cellular structure</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Compression tests</topic><topic>Compressive properties</topic><topic>Crystallography and Scattering Methods</topic><topic>Deformation resistance</topic><topic>Foaming</topic><topic>Foams</topic><topic>Materials Science</topic><topic>Polymer Sciences</topic><topic>Polymers &amp; Biopolymers</topic><topic>Recoverability</topic><topic>Recovery time</topic><topic>Resilience</topic><topic>Rubber</topic><topic>Silicone resins</topic><topic>Silicone rubber</topic><topic>Silicones</topic><topic>Solid Mechanics</topic><topic>Stress-strain curves</topic><topic>Surface hardness</topic><topic>Weight reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Pengwei</creatorcontrib><creatorcontrib>Zhang, Yuan</creatorcontrib><creatorcontrib>Luo, Yong</creatorcontrib><creatorcontrib>Liao, Xia</creatorcontrib><creatorcontrib>Tang, Wanyu</creatorcontrib><creatorcontrib>Yang, Jianming</creatorcontrib><creatorcontrib>Tian, Chenxu</creatorcontrib><creatorcontrib>Li, Guangxian</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central UK/Ireland</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Song, Pengwei</au><au>Zhang, Yuan</au><au>Luo, Yong</au><au>Liao, Xia</au><au>Tang, Wanyu</au><au>Yang, Jianming</au><au>Tian, Chenxu</au><au>Li, Guangxian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2022</date><risdate>2022</risdate><volume>57</volume><issue>3</issue><spage>2292</spage><epage>2304</epage><pages>2292-2304</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correlations between cellular structure and compression properties including surface hardness, compression deformation resistance, permanent compression set and compression resilience capacity were systematically investigated. Results showed that as the cell size increased, the hardness and maximum compressive stress of silicone rubber foams became lower, meanwhile, stress–strain curve exhibited prolonged plateau region. From the compression-resilience testing, it could be concluded that proper cell size increasement could improve deformation recovery capability of silicone rubber foams, simultaneously reduce permanent compression set and shorten recovery time. Besides, 50 cycles of loading–unloading compression tests were conducted to confirm proper cell size of silicone rubber foam employed in cyclic stress environment.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-021-06775-4</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4093-0507</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2022, Vol.57 (3), p.2292-2304
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2620837679
source SpringerLink
subjects Carbon dioxide
Cellular structure
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Compression tests
Compressive properties
Crystallography and Scattering Methods
Deformation resistance
Foaming
Foams
Materials Science
Polymer Sciences
Polymers & Biopolymers
Recoverability
Recovery time
Resilience
Rubber
Silicone resins
Silicone rubber
Silicones
Solid Mechanics
Stress-strain curves
Surface hardness
Weight reduction
title Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A17%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Design%20of%20lightweight%20silicone%20rubber%20foam%20for%20outstanding%20deformation%20recoverability%20based%20on%20supercritical%20CO2%20foaming%20technology&rft.jtitle=Journal%20of%20materials%20science&rft.au=Song,%20Pengwei&rft.date=2022&rft.volume=57&rft.issue=3&rft.spage=2292&rft.epage=2304&rft.pages=2292-2304&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-021-06775-4&rft_dat=%3Cproquest_cross%3E2620837679%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620837679&rft_id=info:pmid/&rfr_iscdi=true