Design of lightweight silicone rubber foam for outstanding deformation recoverability based on supercritical CO2 foaming technology

Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science 2022, Vol.57 (3), p.2292-2304
Hauptverfasser: Song, Pengwei, Zhang, Yuan, Luo, Yong, Liao, Xia, Tang, Wanyu, Yang, Jianming, Tian, Chenxu, Li, Guangxian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Foams with light weight and low compression set are of great importance for shock absorption materials employed in cushioning, pad, body protection and precision instruments. Silicone rubber foams with different cell sizes were designed via supercritical CO 2 (scCO 2 ) foaming technology, the correlations between cellular structure and compression properties including surface hardness, compression deformation resistance, permanent compression set and compression resilience capacity were systematically investigated. Results showed that as the cell size increased, the hardness and maximum compressive stress of silicone rubber foams became lower, meanwhile, stress–strain curve exhibited prolonged plateau region. From the compression-resilience testing, it could be concluded that proper cell size increasement could improve deformation recovery capability of silicone rubber foams, simultaneously reduce permanent compression set and shorten recovery time. Besides, 50 cycles of loading–unloading compression tests were conducted to confirm proper cell size of silicone rubber foam employed in cyclic stress environment.
ISSN:0022-2461
1573-4803
DOI:10.1007/s10853-021-06775-4